Dissolved CO2 in the subsurface resulting from geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This paper is motivated by observations of CO2 seeps from a natural CO2 sequestration analog, Crystal Geyser, Utah. Observations along the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. Finally, the functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps.
Dissolved CO2 in the subsurface resulting from geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by observations of CO2 seeps from a natural CO2 sequestration analog, Crystal Geyser, Utah. Observations along the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. The functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps.
A series of tests have been performed on Sierra White granite subjected to general (true triaxial) states of stress. Tests were performed under constant Lode angle conditions at Lode angles of 23.4, 16.1 and 0°. The constant Lode angle condition was maintained by holding the minimum principal stress constant while increasing the maximum and intermediate principal stress at a predetermined ratio. Tests were performed at minimum principal stresses of 5, 17 and 30 MPa. All of the specimens failed in a brittle manner, with significant dilatant volume strain accumulated, and failure showed a strong dependence on Lode angle. Specimens behaved in a nearly linear elastic manner until approximately 75% of the peak stress was reached. The angle of the failure feature (shear band) was compared to predictions developed by using the Rudnicki and Rice (1975) localization criterion. It was found that there was good agreement (within 7°) between the experimental results and theoretical predictions.
We characterize geomechanical constitutive behavior of reservoir sandstones at conditions simulating the “Cranfield” Southeast Regional Carbon Sequestration Partnership injection program. From two cores of Lower Tuscaloosa Formation, three sandstone lithofacies were identified for mechanical testing based on permeability and lithology. These include: chlorite-cemented conglomeratic sandstone (Facies A); quartz-cemented fine sandstone (Facies B); and quartz- and calcite-cemented very fine sandstone (Facies C). We performed a suite of compression tests for each lithofacies at 100 °C and pore pressure of 30 MPa, including hydrostatic compression and triaxial tests at several confining pressures. Plugs were saturated with supercritical CO2-saturated brine. Chemical environment affected the mechanical response of all three lithofacies, which experience initial plastic yielding at stresses far below estimated in situ stress. Measured elastic moduli degradation defines a secondary yield surface coinciding with in situ stress for Facies B and C. Facies A shows measurable volumetric creep strain and a failure envelope below estimates of in situ stress, linked to damage of chlorite cements by acidic pore solutions. The substantial weakening of a particular lithofacies by CO2 demonstrates a possible chemical-mechanical coupling during injection at Cranfield with implications for CO2 injection, reservoir permeability stimulation, and enhanced oil recovery.
The Mount Simon Sandstone and Eau Claire Formation represent a potential reservoir-caprock system for wastewater disposal, geologic CO2 storage, and compressed air energy storage (CAES) in the Midwestern United States. A primary concern to site performance is heterogeneity in rock properties that could lead to nonideal injectivity and distribution of injected fluids (e.g., poor sweep efficiency). Using core samples from the Dallas Center domal structure, Iowa, we investigate pore characteristics that govern flow properties of major lithofacies of these formations. Methods include gas porosimetry and permeametry, mercury intrusion porosimetry, thin section petrography, and X-ray diffraction. The lithofacies exhibit highly variable intraformational and interformational distributions of pore throat and body sizes. Based on pore-throat size, there are four distinct sample groups. Micropore-throat-dominated samples are from the Eau Claire Formation, whereas the macropore-dominated, mesopore-dominated, and uniform-dominated samples are from the Mount Simon Sandstone. Complex paragenesis governs the high degree of pore and pore-throat size heterogeneity, due to an interplay of precipitation, nonuniform compaction, and later dissolution of cements. The cement dissolution event probably accounts for much of the current porosity in the unit. Mercury intrusion porosimetry data demonstrate that the heterogeneous nature of the pore networks in the Mount Simon Sandstone results in a greater than normal opportunity for reservoir capillary trapping of nonwetting fluids, as quantified by CO2 and air column heights that vary over three orders of magnitude, which should be taken into account when assessing the potential of the reservoir-caprock system for waste disposal (CO2 or produced water) and resource storage (natural gas and compressed air). Our study quantitatively demonstrates the significant impact of millimeter-scale to micron-scale porosity heterogeneity on flow and transport in reservoir sandstones.
This report details experimental testing and constitutive modeling of sandy soil deformation under quasi - static conditions. This is driven by the need to understand constitutive response of soil to target/component behavior upon impact . An experimental and constitutive modeling program was followed to determine elastic - plastic properties and a compressional failure envelope of dry soil . One hydrostatic, one unconfined compressive stress (UCS), nine axisymmetric compression (ACS) , and one uniaxial strain (US) test were conducted at room temperature . Elastic moduli, assuming isotropy, are determined from unload/reload loops and final unloading for all tests pre - failure and increase monotonically with mean stress. Very little modulus degradation was discernable from elastic results even when exposed to mean stresses above 200 MPa . The failure envelope and initial yield surface were determined from peak stresses and observed onset of plastic yielding from all test results. Soil elasto - plastic behavior is described using the Brannon et al. (2009) Kayenta constitutive model. As a validation exercise, the ACS - parameterized Kayenta model is used to predict response of the soil material under uniaxial strain loading. The resulting parameterized and validated Kayenta model is of high quality and suitable for modeling sandy soil deformation under a range of conditions, including that for impact prediction.
The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two-phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in other realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Models for waste release scenarios in salt back-fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and validate. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potential usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mechanics, using sieved run-of-mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (~900 psi) and temperatures to 90°C. This corresponds to UFD Work Package 15SN08180211 milestone “FY:15 Transport Properties of Run-of-Mine Salt Backfill – Unconsolidated to Consolidated”. Samples exposed to uniaxial compression undergo time-dependent consolidation, or creep, to various degrees. Creep volume strain-time relations obey simple log-time behavior through the range of porosities (~50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteristic capillary pressure curves from a series of consolidation tests and show characteristic saturation-capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due to the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett “J” function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self- consistent set of constitutive laws for granular salt consolidation and multiphase (brine-air) flow.
The nature of geologic disposal of nuclear waste in salt formations requires validated and verified two - phase flow models of transport of brine and gas through intact, damaged, and consolidating crushed salt. Such models exist in oth er realms of subsurface engineering for other lithologic classes (oil and gas, carbon sequestration etc. for clastics and carbonates) but have never been experimentally validated and parameterized for salt repository scenarios or performance assessment. Mo dels for waste release scenarios in salt back - fill require phenomenological expressions for capillary pressure and relative permeability that are expected to change with degree of consolidation, and require experimental measurement to parameterize and vali date. This report describes a preliminary assessment of the influence of consolidation (i.e. volume strain or porosity) on capillary entry pressure in two phase systems using mercury injection capillary pressure (MICP). This is to both determine the potent ial usefulness of the mercury intrusion porosimetry method, but also to enable a better experimental design for these tests. Salt consolidation experiments are performed using novel titanium oedometers, or uniaxial compression cells often used in soil mech anics, using sieved run - of - mine salt from the Waste Isolation Pilot Plant (WIPP) as starting material. Twelve tests are performed with various starting amounts of brine pore saturation, with axial stresses up to 6.2 MPa (%7E900 psi) and temperatures to 90 o C. This corresponds to UFD Work Package 15SN08180211 milestone "FY:15 Transport Properties of Run - of - Mine Salt Backfill - Unconsolidated to Consolidated". Samples exposed to uniaxial compression undergo time - dependent consolidation, or creep, to various deg rees. Creep volume strain - time relations obey simple log - time behavior through the range of porosities (%7E50 to 2% as measured); creep strain rate increases with temperature and applied stress as expected. Mercury porosimetry is used to determine characteri stic capillary pressure curves from a series of consolidation tests and show characteristic saturation - capillary pressure curves that follow the common van Genuchten (1978, 1980) formulation at low stresses. Higher capillary pressure data are suspect due t o the large potential for sample damage, including fluid inclusion decrepitation and pore collapse. Data are supportive of use of the Leverett "J" function (Leverett, 1941) to use for scaling characteristic curves at different degrees of consolidation, but better permeability determinations are needed to support this hypothesis. Recommendations for further and refined testing are made with the goal of developing a self - consistent set of constitutive laws for granular salt consolidation and multiphase (brin e - air) flow.