Publications

Results 301–325 of 349

Search results

Jump to search filters

Domain Decomposition Preconditioners for Communication-Avoiding Krylov Methods on a Hybrid CPU/GPU Cluster

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Yamazaki, Ichitaro; Rajamanickam, Sivasankaran R.; Boman, Erik G.; Hoemmen, Mark F.; Heroux, Michael A.; Tomov, Stanimire

Krylov subspace projection methods are widely used iterative methods for solving large-scale linear systems of equations. Researchers have demonstrated that communication avoiding (CA) techniques can improve Krylov methods' performance on modern computers, where communication is becoming increasingly expensive compared to arithmetic operations. In this paper, we extend these studies by two major contributions. First, we present our implementation of a CA variant of the Generalized Minimum Residual (GMRES) method, called CAGMRES, for solving no symmetric linear systems of equations on a hybrid CPU/GPU cluster. Our performance results on up to 120 GPUs show that CA-GMRES gives a speedup of up to 2.5x in total solution time over standard GMRES on a hybrid cluster with twelve Intel Xeon CPUs and three Nvidia Fermi GPUs on each node. We then outline a domain decomposition framework to introduce a family of preconditioners that are suitable for CA Krylov methods. Our preconditioners do not incur any additional communication and allow the easy reuse of existing algorithms and software for the sub domain solves. Experimental results on the hybrid CPU/GPU cluster demonstrate that CA-GMRES with preconditioning achieve a speedup of up to 7.4x over CAGMRES without preconditioning, and speedup of up to 1.7x over GMRES with preconditioning in total solution time. These results confirm the potential of our framework to develop a practical and effective preconditioned CA Krylov method.

More Details

BFS and coloring-based parallel algorithms for strongly connected components and related problems

Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS

Slota, George M.; Rajamanickam, Sivasankaran R.; Madduri, Kamesh

Finding the strongly connected components (SCCs) of a directed graph is a fundamental graph-theoretic problem. Tarjan's algorithm is an efficient serial algorithm to find SCCs, but relies on the hard-to-parallelize depth-first search (DFS). We observe that implementations of several parallel SCC detection algorithms show poor parallel performance on modern multicore platforms and large-scale networks. This paper introduces the Multistep method, a new approach that avoids work inefficiencies seen in prior SCC approaches. It does not rely on DFS, but instead uses a combination of breadth-first search (BFS) and a parallel graph coloring routine. We show that the Multistep method scales well on several real-world graphs, with performance fairly independent of topological properties such as the size of the largest SCC and the total number of SCCs. On a 16-core Intel Xeon platform, our algorithm achieves a 20X speedup over the serial approach on a 2 billion edge graph, fully decomposing it in under two seconds. For our collection of test networks, we observe that the Multistep method is 1.92X faster (mean speedup) than the state-of-the-art Hong et al. SCC method. In addition, we modify the Multistep method to find connected and weakly connected components, as well as introduce a novel algorithm for determining articulation vertices of biconnected components. These approaches all utilize the same underlying BFS and coloring routines. © 2014 IEEE.

More Details

PuLP: Scalable multi-objective multi-constraint partitioning for small-world networks

Proceedings - 2014 IEEE International Conference on Big Data, IEEE Big Data 2014

Slota, George M.; Madduri, Kamesh; Rajamanickam, Sivasankaran R.

We present PuLP, a parallel and memory-efficient graph partitioning method specifically designed to partition low-diameter networks with skewed degree distributions. Graph partitioning is an important Big Data problem because it impacts the execution time and energy efficiency of graph analytics on distributed-memory platforms. Partitioning determines the in-memory layout of a graph, which affects locality, intertask load balance, communication time, and overall memory utilization of graph analytics. A novel feature of our method PuLP (Partitioning using Label Propagation) is that it optimizes for multiple objective metrics simultaneously, while satisfying multiple partitioning constraints. Using our method, we are able to partition a web crawl with billions of edges on a single compute server in under a minute. For a collection of test graphs, we show that PuLP uses 8-39× less memory than state-of-the-art partitioners and is up to 14.5× faster, on average, than alternate approaches (with 16-way parallelism). We also achieve better partitioning quality results for the multi-objective scenario.

More Details

Exploiting geometric partitioning in task mapping for parallel computers

Proceedings of the International Parallel and Distributed Processing Symposium, IPDPS

Deveci, Mehmet; Rajamanickam, Sivasankaran R.; Leung, Vitus J.; Pedretti, Kevin P.; Olivier, Stephen L.; Bunde, David P.; Catalyurek, Umit V.; Devine, Karen D.

We present a new method for mapping applications' MPI tasks to cores of a parallel computer such that communication and execution time are reduced. We consider the case of sparse node allocation within a parallel machine, where the nodes assigned to a job are not necessarily located within a contiguous block nor within close proximity to each other in the network. The goal is to assign tasks to cores so that interdependent tasks are performed by 'nearby' cores, thus lowering the distance messages must travel, the amount of congestion in the network, and the overall cost of communication. Our new method applies a geometric partitioning algorithm to both the tasks and the processors, and assigns task parts to the corresponding processor parts. We show that, for the structured finite difference mini-app Mini Ghost, our mapping method reduced execution time 34% on average on 65,536 cores of a Cray XE6. In a molecular dynamics mini-app, Mini MD, our mapping method reduced communication time by 26% on average on 6144 cores. We also compare our mapping with graph-based mappings from the LibTopoMap library and show that our mappings reduced the communication time on average by 15% in MiniGhost and 10% in MiniMD. © 2014 IEEE.

More Details

Scalable matrix computations on large scale-free graphs using 2D graph partitioning

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Boman, Erik G.; Devine, Karen D.; Rajamanickam, Sivasankaran R.

Scalable parallel computing is essential for processing large scale-free (power-law) graphs. The distribution of data across processes becomes important on distributed-memory computers with thousands of cores. It has been shown that two dimensional layouts (edge partitioning) can have significant advantages over traditional one-dimensional layouts. However, simple 2D block distribution does not use the structure of the graph, and more advanced 2D partitioning methods are too expensive for large graphs. We propose a new two-dimensional partitioning algorithm that combines graph partitioning with 2D block distribution. The computational cost of the algorithm is essentially the same as 1D graph partitioning. We study the performance of sparse matrix-vector multiplication (SpMV) for scale-free graphs from the web and social networks using several different partitioners and both 1D and 2D data layouts. We show that SpMV run time is reduced by exploiting the graph's structure. Contrary to popular belief, we observe that current graph and hypergraph partitioners often yield relatively good partitions on scale-free graphs. We demonstrate that our new 2D partitioning method consistently outperforms the other methods considered, for both SpMV and an eigensolver, on matrices with up to 1.6 billion nonzeros using up to 16,384 cores. Copyright 2013 ACM.

More Details
Results 301–325 of 349
Results 301–325 of 349