ShyLU: On node Solvers and Kokkos-Kernels
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - 2015 IEEE 29th International Parallel and Distributed Processing Symposium, IPDPS 2015
The divergence in the computer architecture landscape has resulted in different architectures being considered mainstream at the same time. For application and algorithm developers, a dilemma arises when one must focus on using underlying architectural features to extract the best performance on each of these architectures, while writing portable code at the same time. We focus on this problem with graph analytics as our target application domain. In this paper, we present an abstraction-based methodology for performance-portable graph algorithm design on manicure architectures. We demonstrate our approach by systematically optimizing algorithms for the problems of breadth-first search, color propagation, and strongly connected components. We use Kokkos, a manicure library and programming model, for prototyping our algorithms. Our portable implementation of the strongly connected components algorithm on the NVIDIA Tesla K40M is up to 3.25× faster than a state-of-the-art parallel CPU implementation on a dual-socket Sandy Bridge compute node.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
The computer-aided design (CAD) applications that are fundamental to the electronic design automation industry need to harness the available hardware resources to be able to perform full-chip simulation for modern technology nodes (45nm and below). We will present a hybrid (MPI+threads) approach for parallel transistor-level transient circuit simulation that achieves scalable performance for some challenging large-scale integrated circuits. This approach focuses on the computationally expensive part of the simulator: the linear system solve. Hybrid versions of two iterative linear solver strategies are presented, one takes advantage of block triangular form structure while the other uses a Schur complement technique. Results indicate up to a 27x improvement in total simulation time on 256 cores.
Abstract not provided.
Abstract not provided.
Abstract not provided.
As computer systems grow in both size and complexity, the need for applications and run-time systems to adjust to their dynamic environment also grows. The goal of the RAAMP LDRD was to combine static architecture information and real-time system state with algorithms to conserve power, reduce communication costs, and avoid network contention. We devel- oped new data collection and aggregation tools to extract static hardware information (e.g., node/core hierarchy, network routing) as well as real-time performance data (e.g., CPU uti- lization, power consumption, memory bandwidth saturation, percentage of used bandwidth, number of network stalls). We created application interfaces that allowed this data to be used easily by algorithms. Finally, we demonstrated the benefit of integrating system and application information for two use cases. The first used real-time power consumption and memory bandwidth saturation data to throttle concurrency to save power without increasing application execution time. The second used static or real-time network traffic information to reduce or avoid network congestion by remapping MPI tasks to allocated processors. Results from our work are summarized in this report; more details are available in our publications [2, 6, 14, 16, 22, 29, 38, 44, 51, 54].
Abstract not provided.
The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia National Laboratories for focused collaborative research on computer science, computational science, and mathematics problems that are critical to the mission of the laboratories, the Department of Energy, and the United States. The CSRI provides a mechanism by which university researchers learn about and impact national— and global—scale problems while simultaneously bringing new ideas from the academic research community to bear on these important problems. A key component of CSRI programs over the last decade has been an active and productive summer program where students from around the country conduct internships at CSRI. Each student is paired with a Sandia staff member who serves as technical advisor and mentor. The goals of the summer program are to expose the students to research in mathematical and computer sciences at Sandia and to conduct a meaningful and impactful summer research project with their Sandia mentor. Every effort is made to align summer projects with the student's research objectives and all work is coordinated with the ongoing research activities of the Sandia mentor in alignment with Sandia technical thrusts. For the 2013 CSRI Proceedings, research articles have been organized into the following broad technical focus areas — Computational Mathematics and Algorithms, Combinatorial Algorithms and Visualization, Advanced Architectures and Systems Software, Computational Applications — which are well aligned with Sandia's strategic thrusts in computer and information sciences.
Abstract not provided.
Parallel Processing Letters
Abstract not provided.