Publications

Results 51–71 of 71
Skip to search filters

A speckle patterning study for laboratory-scale DIC experiments

Conference Proceedings of the Society for Experimental Mechanics Series

Kramer, Sharlotte L.; Reu, Phillip L.; Bonk, Sarah

A “good” speckle pattern enables DIC to make its full-field measurements, but oftentimes this artistic part of the DIC setup takes a considerable amount of time to develop and evaluate for a given optical configuration. A catalog of well-quantified speckle patterns for various fields of view would greatly decrease the time it would take to start making DIC measurements. The purpose of this speckle patterning study is to evaluate various speckling techniques we had readily available in our laboratories for fields of view from around 100 mm down to 5 mm that are common for laboratory-scale experiments. The list of speckling techniques is not exhaustive: spray painting, UV-printing of computer-designed speckle patterns, airbrushing, and particle dispersion. First, we quantified the resolution of our optical configurations for each of the fields of view to determine the smallest speckle we could resolve. Second, we imaged several speckle patterns at each field of view. Third, we quantified the average and standard deviation of the speckle size, speckle contrast, and density to characterize the quality of the speckle pattern. Finally, we performed computer-aided sub-pixel translation of the speckle patterns and ran correlations to examine how well DIC tracked the pattern translations. We discuss our metrics for a “good” speckle pattern and outline how others may perform similar studies for their desired optical configurations.

More Details

V-Notched rail test for shear-dominated deformation of Ti-6A1-4V

Conference Proceedings of the Society for Experimental Mechanics Series

Kramer, Sharlotte L.; Laing, John R.; Bosiljevac, Thomas B.; Gearhart, Jhana S.; Boyce, Brad B.

Evermore sophisticated ductile plasticity and failure models demand experimental material characterization of shear behavior; yet, the mechanics community lacks a widely accepted, standard test method for shear-dominated deformation and failure of ductile metals. We investigated the use of the V-notched rail test, borrowed from the ASTM D7078 standard for shear testing of composites, for shear testing of Ti-6Al-4V titanium alloy sheet material, considering sheet rolling direction and quasi-static and transient load rates. In this paper, we discuss practical aspects of testing, modifications to the specimen geometry, and the experimental shear behavior of Ti-6Al-4V. Specimen installation, machine compliance, specimen-grip slip during testing, and specimen V-notched geometry all influenced the measured specimen behavior such that repeatable shear-dominated behavior was initially difficult to obtain. We will discuss the careful experimental procedure and set of measurements necessary to extract meaningful shear information for Ti-6Al-4V. We also evaluate the merits and deficiencies, including practicality of testing for engineering applications and quality of results, of the V-notched rail test for characterization of ductile shear behavior.

More Details

2014 WSEAT X-Prize

Bosiljevac, Thomas B.; Kramer, Sharlotte L.

The 2014 WSEAT X-Prize is modeled as a double blind study to challenge the computational and material mechanics communities methodologies to develop better capabilities in modeling and experimentation to predict the failure in ductile metals. The challenge is presented as a distinct, yet relatively, simple geometry with all reported modeling predictions blind to each of the modeling teams. The experimental testing is validated by two independent test labs to confirm the experimentally observed behavior and results are unbiased and repeatable. The WSEAT X-Prize was issued to both external participants and internal participants as the Sandia Fracture Challenge 2 (SFC2) on May 30, 2014. A Challenge Supplemental Information Packet was sent to participants on August 13, 2014 to Prior years SFCs focused on the ability to predict failures under a quasi-static loading condition that focused on either a shear or tensile-dominated failure mode. This year’s challenge focuses on a geometry with a shear and/or tensile-dominated failure mode influenced by a moderate strain-rate ductile fracture in a metallic alloy.

More Details

Implementation and Evaluation of the Virtual Fields Method: Determining Constitutive Model Parameters From Full-Field Deformation Data

Kramer, Sharlotte L.; Scherzinger, William M.

The Virtual Fields Method (VFM) is an inverse method for constitutive model parameter identication that relies on full-eld experimental measurements of displacements. VFM is an alternative to standard approaches that require several experiments of simple geometries to calibrate a constitutive model. VFM is one of several techniques that use full-eld exper- imental data, including Finite Element Method Updating (FEMU) techniques, but VFM is computationally fast, not requiring iterative FEM analyses. This report describes the im- plementation and evaluation of VFM primarily for nite-deformation plasticity constitutive models. VFM was successfully implemented in MATLAB and evaluated using simulated FEM data that included representative experimental noise found in the Digital Image Cor- relation (DIC) optical technique that provides full-eld displacement measurements. VFM was able to identify constitutive model parameters for the BCJ plasticity model even in the presence of simulated DIC noise, demonstrating VFM as a viable alternative inverse method. Further research is required before VFM can be adopted as a standard method for constitu- tive model parameter identication, but this study is a foundation for ongoing research at Sandia for improving constitutive model calibration.

More Details
Results 51–71 of 71
Results 51–71 of 71