Publications

Results 201–225 of 242

Search results

Jump to search filters

Time Encoded Radiation Imaging

Marleau, P.; Brubaker, E.; Gerling, Mark; Schuster, Patricia F.; Steele, J.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. Designing such a system is a daunting task. Using timemodulated collimators could be a transformative technique leading to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. A new technique using time encoding to make a compact, high efficiency imaging detector was conceived. Design considerations using Monte Carlo modeling and the construction and demonstration of a prototype imager are described.

More Details

Ground water and snow sensor based on directional detection of cosmogenic neutrons

Griffin, Patrick J.; Marleau, P.

A fast neutron detector is being developed to measure the cosmic ray neutron flux in order to measure soil moisture. Soil that is saturated with water has an enhanced ability to moderate fast neutrons, removing them from the backscatter spectrum. The detector is a two-element, liquid scintillator detector. The choice of liquid scintillator allows rejection of gamma background contamination from the desired neutron signal. This enhances the ability to reconstruct the energy and direction of a coincident neutron event. The ability to image on an event-by-event basis allows the detector to selectively scan the neutron flux as a function of distance from the detector. Calibrations, simulations, and optimization have been completed to understand the detector response to neutron sources at variable distances and directions. This has been applied to laboratory background measurements in preparation for outdoor field tests.

More Details

Fast neutron resonance tomography using double scatter spectroscopy for materials identification

IEEE Nuclear Science Symposium Conference Record

Marleau, P.; Brennan, J.; Brubaker, E.; Mengesha, Wondwosen; Mrowka, Stanley

Fast neutron based inspection systems are of interest in many Homeland Security applications because they offer the potential for elemental identification particularly for low Z elements which are the prime constituents of explosives. We are investigating a resonance tomography technique which may address some of the current problems found in fast neutron based inspection systems. A commercial off-the-shelf DT generator is used with an array of detectors to probe materials simultaneously over a large energy range and multiple viewing angles allowing for simultaneous 3-D imaging and materials identification. A prototype system has been constructed and we present here recent results for the identification of materials with differing H, C, N, O compositions. © 2011 IEEE.

More Details

Time encoded fast neutron/gamma imager for large standoff SNM detection

IEEE Nuclear Science Symposium Conference Record

Marleau, P.; Brennan, J.; Brubaker, E.; Gerling, Mark; Schuster, Patricia F.; Steele, J.

Passive detection of special nuclear material (SNM) at long range or under heavy shielding can only be directly achieved by observing the penetrating neutral particles that it emits: gamma rays and neutrons in the MeV energy range. The ultimate SNM standoff detector system would have sensitivity to both gamma and neutron radiation, a large area and high efficiency to capture as many signal particles as possible, and good discrimination against background particles via directional and energy information. We are exploring the use of time-modulated collimators that may lead to practical gamma-neutron imaging detector systems that are highly efficient with the potential to exhibit simultaneously high angular and energy resolution. We will present results from a large standoff SNM detection demonstration using a prototype high sensitivity time encoded modulation imager. © 2011 IEEE.

More Details
Results 201–225 of 242
Results 201–225 of 242