Publications

Results 26–35 of 35

Search results

Jump to search filters

Neuromorphic scaling advantages for energy-efficient random walk computations

Smith, John D.; Hill, Aaron J.; Reeder, Leah; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Severa, William M.; Aimone, James B.

Computing stands to be radically improved by neuromorphic computing (NMC) approaches inspired by the brain's incredible efficiency and capabilities. Most NMC research, which aims to replicate the brain's computational structure and architecture in man-made hardware, has focused on artificial intelligence; however, less explored is whether this brain-inspired hardware can provide value beyond cognitive tasks. We demonstrate that high-degree parallelism and configurability of spiking neuromorphic architectures makes them well-suited to implement random walks via discrete time Markov chains. Such random walks are useful in Monte Carlo methods, which represent a fundamental computational tool for solving a wide range of numerical computing tasks. Additionally, we show how the mathematical basis for a probabilistic solution involving a class of stochastic differential equations can leverage those simulations to provide solutions for a range of broadly applicable computational tasks. Despite being in an early development stage, we find that NMC platforms, at a sufficient scale, can drastically reduce the energy demands of high-performance computing platforms.

More Details

Solving a steady-state PDE using spiking networks and neuromorphic hardware

ACM International Conference Proceeding Series

Smith, John D.; Severa, William M.; Hill, Aaron J.; Reeder, Leah E.; Franke, Brian C.; Lehoucq, Richard B.; Parekh, Ojas D.; Aimone, James B.

The widely parallel, spiking neural networks of neuromorphic processors can enable computationally powerful formulations. While recent interest has focused on primarily machine learning tasks, the space of appropriate applications is wide and continually expanding. Here, we leverage the parallel and event-driven structure to solve a steady state heat equation using a random walk method. The random walk can be executed fully within a spiking neural network using stochastic neuron behavior, and we provide results from both IBM TrueNorth and Intel Loihi implementations. Additionally, we position this algorithm as a potential scalable benchmark for neuromorphic systems.

More Details

Developing and evaluating Malliavin estimators for intrusive sensitivity analysis of Monte Carlo radiation transport

Bond, Stephen D.; Franke, Brian C.; Lehoucq, Richard B.; Smith, John D.

We will develop Malliavin estimators for Monte Carlo radiation transport by formulating the governing jump stochastic differential equation and deriving the applicable estimators that produce sensitivities for our equations. Efficient and effective sensitivity can be used for design optimization and uncertainty quantification with broad utilization for radiation environments. The technology demonstration will lower development risk for other particle-based simulation methods.

More Details
Results 26–35 of 35
Results 26–35 of 35