Publications

Results 126–150 of 161

Search results

Jump to search filters

Preliminary performance assessment for deep borehole disposal of high-level radioactive waste

Materials Research Society Symposium Proceedings

Swift, Peter; Arnold, Bill W.; Brady, Patrick V.; Freeze, Geoffrey; Hadgu, Teklu; Lee, Joon H.

Deep boreholes have been proposed for many decades as an option for permanent disposal of high-level radioactive waste and spent nuclear fuel. Disposal concepts are straightforward, and generally call for drilling boreholes to a depth of four to five kilometers (or more) into crystalline basement rocks. Waste is placed in the lower portion of the hole, and the upper several kilometers of the hole are sealed to provide effective isolation from the biosphere. The potential for excellent long-term performance has been recognized in many previous studies. This paper reports updated results of what is believed to be the first quantitative analysis of releases from a hypothetical disposal borehole repository using the same performance assessment methodology applied to mined geologic repositories for high-level radioactive waste. Analyses begin with a preliminary consideration of a comprehensive list of potentially relevant features, events, and processes (FEPs) and the identification of those FEPs that appear to be most likely to affect long-term performance in deep boreholes. The release pathway selected for preliminary performance assessment modeling is thermally-driven flow and radionuclide transport upwards from the emplacement zone through the borehole seals or the surrounding annulus of disturbed rock. Estimated radionuclide releases from deep borehole disposal of spent nuclear fuel, and the annual radiation doses to hypothetical future humans associated with those releases, are extremely small, indicating that deep boreholes may be a viable alternative to mined repositories for disposal of both high-level radioactive waste and spent nuclear fuel. © 2012 Materials Research Society.

More Details

Development of an Advanced Performance Assessment Modeling Capability for Geologic Disposal of Nuclear Waste: Methodology and Requirements

Freeze, Geoffrey; Vaughn, Palmer

This report describes the planning and initial development of an advanced disposal system PA modeling capability to facilitate the science-based evaluation of disposal system performance for a range of fuel cycle alternatives in a variety of geologic media and generic disposal system concepts. The advanced modeling capability will provide a PA model framework that facilitates PA model development, execution, and evaluation within a formal PA methodology. The PA model framework will provide a formalized structure that enables (a) representation and implementation of a range of generic geologic disposal system options, (b) representation of subsystem processes and couplings at varying levels of complexity in an integrated disposal system model, (c) flexible, modular representation of multi-physics processes, including the use of legacy codes, (d) evaluation of system- and subsystem-level performance, (e) uncertainty and sensitivity analyses to isolate key subsystem processes and components, (f) data and configuration management functions, and (g) implementation in HPC environments.

More Details

Preliminary performance assessment for deep borehole disposal of high-level radioacttve waste

13th International High-Level Radioactive Waste Management Conference 2011, IHLRWMC 2011

Arnold, Bill W.; Brady, Patrick V.; Freeze, Geoffrey; Lee, Joon H.; Hadgu, Teklu; Wang, Yifeng

Deep boreholes have been proposed for many decades as an option for permanent disposal of high-level radioactive waste and spent nuclear fuel. Disposal concepts are straightforward, and generally call for drilling boreholes to a depth of three to five kilometers into crystalline basement rocks. Waste is placed in the lower portion of the hole, and the upper several kilometers of the hole are sealed to provide effective isolation from the biosphere. The potential for excellent long-term performance has been recognized in many previous studies. This paper reports updated results of what is believed to be the first quantitative analysis of releases from a hypothetical disposal borehole repository using the same performance assessment methodology applied to mined geologic repositories for high-level radioactive waste. Analyses begin with a preliminary consideration of a comprehensive list of potentially relevant features, events, and processes (FEPs) and the identification of those FEPs that appear to be most likely to affect long-term performance in deep boreholes. Performance assessment model estimates of releases from deep boreholes, and the annual radiation doses to hypothetical future humans associated with those releases, are extremely small, indicating that deep boreholes may be a viable alternative to mined repositories for disposal of both high-level radioactive waste and spent nuclear fuel.

More Details

Granite disposal of U.S. high-level radioactive waste

Mariner, Paul; Lee, Joon H.; Hardin, Ernest; Hansen, Francis D.; Freeze, Geoffrey; Lord, Anna S.; Goldstein, Barry

This report evaluates the feasibility of disposing U.S. high-level radioactive waste in granite several hundred meters below the surface of the earth. The U.S. has many granite formations with positive attributes for permanent disposal. Similar crystalline formations have been extensively studied by international programs, two of which, in Sweden and Finland, are the host rocks of submitted or imminent repository license applications. This report is enabled by the advanced work of the international community to establish functional and operational requirements for disposal of a range of waste forms in granite media. In this report we develop scoping performance analyses, based on the applicable features, events, and processes (FEPs) identified by international investigators, to support generic conclusions regarding post-closure safety. Unlike the safety analyses for disposal in salt, shale/clay, or deep boreholes, the safety analysis for a mined granite repository depends largely on waste package preservation. In crystalline rock, waste packages are preserved by the high mechanical stability of the excavations, the diffusive barrier of the buffer, and favorable chemical conditions. The buffer is preserved by low groundwater fluxes, favorable chemical conditions, backfill, and the rigid confines of the host rock. An added advantage of a mined granite repository is that waste packages would be fairly easy to retrieve, should retrievability be an important objective. The results of the safety analyses performed in this study are consistent with the results of comprehensive safety assessments performed for sites in Sweden, Finland, and Canada. They indicate that a granite repository would satisfy established safety criteria and suggest that a small number of FEPs would largely control the release and transport of radionuclides. In the event the U.S. decides to pursue a potential repository in granite, a detailed evaluation of these FEPs would be needed to inform site selection and safety assessment.

More Details

Nuclear Energy Advanced Modeling and Simulation (NEAMS) Waste Integrated Performance and Safety Codes (IPSC) : FY10 development and integration

Freeze, Geoffrey; Arguello, Jose G.; Bouchard, Julie F.; Criscenti, Louise; Dewers, Thomas; Edwards, Harold C.; Sassani, David C.; Schultz, Peter A.; Wang, Yifeng

This report describes the progress in fiscal year 2010 in developing the Waste Integrated Performance and Safety Codes (IPSC) in support of the U.S. Department of Energy (DOE) Office of Nuclear Energy Advanced Modeling and Simulation (NEAMS) Campaign. The goal of the Waste IPSC is to develop an integrated suite of computational modeling and simulation capabilities to quantitatively assess the long-term performance of waste forms in the engineered and geologic environments of a radioactive waste storage or disposal system. The Waste IPSC will provide this simulation capability (1) for a range of disposal concepts, waste form types, engineered repository designs, and geologic settings, (2) for a range of time scales and distances, (3) with appropriate consideration of the inherent uncertainties, and (4) in accordance with robust verification, validation, and software quality requirements. Waste IPSC activities in fiscal year 2010 focused on specifying a challenge problem to demonstrate proof of concept, developing a verification and validation plan, and performing an initial gap analyses to identify candidate codes and tools to support the development and integration of the Waste IPSC. The current Waste IPSC strategy is to acquire and integrate the necessary Waste IPSC capabilities wherever feasible, and develop only those capabilities that cannot be acquired or suitably integrated, verified, or validated. This year-end progress report documents the FY10 status of acquisition, development, and integration of thermal-hydrologic-chemical-mechanical (THCM) code capabilities, frameworks, and enabling tools and infrastructure.

More Details
Results 126–150 of 161
Results 126–150 of 161