Publications

112 Results

Search results

Jump to search filters

No tImplementing transition--edge sensors in a tabletop edge sensors in a tabletop xx--ray CT system for imaging applicationsray CT system for imaging applicationsitle

Alpert, Bradley; Becker, Daniel; Bennett, Douglas; Doriese, W.; Durkin, Malcolm; Fowler, Joseph; Gard, Johnathon; Imrek, Jozsef; Levine, Zachary; Mates, John; Miaja-Avila, Luis; Morgan, Kelsey; Nakamura, Nathan; O'Neil, Galen; Ortiz, Nathan; Reintsema, Carl; Schmidt, Daniel; Swetz, Daniel; Szypryt, Paul; Ullom, Joel; Vale, Leila; Weber, Joel; Wessels, Abigail; Dagel, Amber; Dalton, Gabriella; Foulk, James W.; Jimenez, Edward S.; Mcarthur, Daniel; Thompson, Kyle; Walker, Christopher; Wheeler, Jason; Ablerto, Julien; Griveau, Damien; Silvent, Jeremie

Abstract not provided.

Design and fabrication of multi-metal patterned target anodes for improved quality of hyperspectral X-ray radiography and computed tomography imaging systems

Proceedings of SPIE - The International Society for Optical Engineering

Foulk, James W.; Foulk, James W.; Dalton, Gabriella; Wheeling, Rebecca; Foulk, James W.; Thompson, Kyle; Foulk, James W.; Jimenez, Edward S.

Applications such as counterfeit identification, quality control, and non-destructive material identification benefit from improved spatial and compositional analysis. X-ray Computed Tomography is used in these applications but is limited by the X-ray focal spot size and the lack of energy-resolved data. Recently developed hyperspectral X-ray detectors estimate photon energy, which enables composition analysis but lacks spatial resolution. Moving beyond bulk homogeneous transmission anodes toward multi-metal patterned anodes enables improvements in spatial resolution and signal-to-noise ratios in these hyperspectral X-ray imaging systems. We aim to design and fabricate transmission anodes that facilitate confirmation of previous simulation results. These anodes are fabricated on diamond substrates with conventional photolithography and metal deposition processes. The final transmission anode design consists of a cluster of three disjoint metal bumps selected from molybdenum, silver, samarium, tungsten, and gold. These metals are chosen for their k-lines, which are positioned within distinct energy intervals of interest and are readily available in standard clean rooms. The diamond substrate is chosen for its high thermal conductivity and high transmittance of X-rays. The feature size of the metal bumps is chosen such that the cluster is smaller than the 100 m diameter of the impinging electron beam in the X-ray tube. This effectively shrinks the X-ray focal spot in the selected energy bands. Once fabricated, our transmission anode is packaged in a stainless-steel holder that can be retrofitted into our existing X-ray tube. Innovations in anode design enable an inexpensive and simple method to improve existing X-ray imaging systems.

More Details

Design and fabrication of multi-metal patterned target anodes for improved quality of hyperspectral X-ray radiography and computed tomography imaging systems

Proceedings of SPIE - The International Society for Optical Engineering

Foulk, James W.; Foulk, James W.; Dalton, Gabriella; Wheeling, Rebecca; Foulk, James W.; Thompson, Kyle; Foulk, James W.; Jimenez, Edward S.

Applications such as counterfeit identification, quality control, and non-destructive material identification benefit from improved spatial and compositional analysis. X-ray Computed Tomography is used in these applications but is limited by the X-ray focal spot size and the lack of energy-resolved data. Recently developed hyperspectral X-ray detectors estimate photon energy, which enables composition analysis but lacks spatial resolution. Moving beyond bulk homogeneous transmission anodes toward multi-metal patterned anodes enables improvements in spatial resolution and signal-to-noise ratios in these hyperspectral X-ray imaging systems. We aim to design and fabricate transmission anodes that facilitate confirmation of previous simulation results. These anodes are fabricated on diamond substrates with conventional photolithography and metal deposition processes. The final transmission anode design consists of a cluster of three disjoint metal bumps selected from molybdenum, silver, samarium, tungsten, and gold. These metals are chosen for their k-lines, which are positioned within distinct energy intervals of interest and are readily available in standard clean rooms. The diamond substrate is chosen for its high thermal conductivity and high transmittance of X-rays. The feature size of the metal bumps is chosen such that the cluster is smaller than the 100 m diameter of the impinging electron beam in the X-ray tube. This effectively shrinks the X-ray focal spot in the selected energy bands. Once fabricated, our transmission anode is packaged in a stainless-steel holder that can be retrofitted into our existing X-ray tube. Innovations in anode design enable an inexpensive and simple method to improve existing X-ray imaging systems.

More Details

An Improved Process to Colorize Visualizations of Noisy X-Ray Hyperspectral Computed Tomography Scans of Similar Materials

2022 IEEE NSS/MIC RTSD - IEEE Nuclear Science Symposium, Medical Imaging Conference and Room Temperature Semiconductor Detector Conference

Clifford, Joshua; Limpanukorn, Ben; Jimenez, Edward S.

Hyperspectral Computed Tomography (HCT) Data is often visualized using dimension reduction algorithms. However, these methods often fail to adequately differentiate between materials with similar spectral signatures. Previous work showed that a combination of image preprocessing, clustering, and dimension reduction techniques can be used to colorize simulated HCT data and enhance the contrast between similar materials. In this work, we evaluate the efficacy of these existing methods on experimental HCT data and propose new improvements to the robustness of these methods. We introduce an automated channel selection method and compare the Feldkamp, Davis, and Kress filtered back-projection (FBP) algorithm with the maximum-likelihood estimation-maximization (MLEM) algorithm in terms of HCT reconstruction image quality and its effect on different colorization methods. Additionally, we propose adaptations to the colorization process that eliminate the need for a priori knowledge of the number distinct materials for material classification. Our results show that these methods generalize to materials in real-world experimental HCT data for both colorization and classification tasks; both tasks have applications in industry, medicine, and security, wherever rapid visualization and identification is needed.

More Details

Monte-Carlo modeling and design of a high-resolution hyperspectral computed tomography system with a multi-material patterned anodes for material identification applications

Proceedings of SPIE - The International Society for Optical Engineering

Dalton, Gabriella; Foulk, James W.; Clifford, Joshua; Kemp, Emily; Limpanukorn, Ben; Jimenez, Edward S.

Industrial and security communities leverage x-ray computed tomography for several applications in non-destructive evaluation such as material detection and metrology. Many of these applications ultimately reach a limit as most x-ray systems have a nonlinear mathematical operator due to the Bremsstrahlung radiation emitted from the x-ray source. This work proposes a design of a multi-metal pattered anode coupled with a hyperspectral X-ray detector to improve spatial resolution, absorption signal, and overall data quality for various quantitative. The union of a multi-metal pattered anode x-ray source with an energy-resolved photon counting detector permits the generation and detection of a preferential set of X-ray energy peaks. When photons about the peaks are detected, while rejecting photons outside this neighborhood, the overall quality of the image is improved by linearizing the operator that defines the image formation. Additionally, the effective X-ray focal spot size allows for further improvement of the image quality by increasing resolution. Previous works use machine learning techniques to analyze the hyperspectral computed tomography signal and reliably identify and discriminate a wide range of materials based on a material's composition, improving data quality through a multi-material pattern anode will further enhance these identification and classification methods. This work presents initial investigations of a multi-metal patterned anode along with a hyperspectral detector using a general-purpose Monte Carlo particle transport code known as PHITS version 3.24. If successful, these results will have tremendous impact on several nondestructive evaluation applications in industry, security, and medicine.

More Details

A Process to Colorize and Assess Visualizations of Noisy X-Ray Computed Tomography Hyperspectral Data of Materials with Similar Spectral Signatures

2021 IEEE Nuclear Science Symposium and Medical Imaging Conference Record, NSS/MIC 2021 and 28th International Symposium on Room-Temperature Semiconductor Detectors, RTSD 2022

Clifford, Joshua; Kemp, Emily; Limpanukorn, Ben; Jimenez, Edward S.

Dimension reduction techniques have frequently been used to summarize information from high dimensional hyperspectral data, usually done in effort to classify or visualize the materials contained in the hyperspectral image. The main challenge in applying these techniques to Hyperspectral Computed Tomography (HCT) data is that if the materials in the field of view are of similar composition then it can be difficult for a visualization of the hyperspectral image to differentiate between the materials. We propose novel alternative methods of preprocessing and summarizing HCT data in a single colorized image and novel measures to assess desired qualities in the resultant colored image, such as the contrast between different materials and the consistency of color within the same object. Proposed processes in this work include a new majority-voting method for multi-level thresholding, binary erosion, median filters, PAM clustering for grouping pixels into objects (of homogeneous materials) and mean/median assignment along the spectral dimension for representing the underlying signature, UMAP or GLMs to assign colors, and quantitative coloring assessment with developed measures. Strengths and weaknesses of various combinations of methods are discussed. These results have the potential to create more robust material identification methods from HCT data that has wide use in industrial, medical, and security-based applications for detection and quantification, including visualization methods to assist with rapid human interpretability of these complex hyperspectral signatures.

More Details

AirNet-SNL: End-to-end training of iterative reconstruction and deep neural network regularization for sparse-data XPCI CT

Optics InfoBase Conference Papers

Lee, Dennis J.; Mulcahy-Stanislawczyk, Johnathan; Jimenez, Edward S.; Goodner, Ryan N.; West, Roger D.; Epstein, Collin; Thompson, Kyle; Dagel, Amber

We present a deep learning image reconstruction method called AirNet-SNL for sparse view computed tomography. It combines iterative reconstruction and convolutional neural networks with end-to-end training. Our model reduces streak artifacts from filtered back-projection with limited data, and it trains on randomly generated shapes. This work shows promise to generalize learning image reconstruction.

More Details

High-fidelity calibration and characterization of a spectral computed tomography system

Proceedings of SPIE - The International Society for Optical Engineering

Gallegos, Isabel; Dalton, Gabriella; Stohn, Adriana M.; Koundinyan, Srivathsan; Thompson, Kyle; Jimenez, Edward S.

Sandia National Laboratories has developed a model characterizing the nonlinear encoding operator of the world's first hyperspectral x-ray computed tomography (H-CT) system as a sequence of discrete-to-discrete, linear image system matrices across unique and narrow energy windows. In fields such as national security, industry, and medicine, H-CT has various applications in the non-destructive analysis of objects such as material identification, anomaly detection, and quality assurance. However, many approaches to computed tomography (CT) make gross assumptions about the image formation process to apply post-processing and reconstruction techniques that lead to inferior data, resulting in faulty measurements, assessments, and quantifications. To abate this challenge, Sandia National Laboratories has modeled the H-CT system through a set of point response functions, which can be used for calibration and anaylsis of the real-world system. This work presents the numerical method used to produce the model through the collection of data needed to describe the system; the parameterization used to compress the model; and the decompression of the model for computation. By using this linear model, large amounts of accurate synthetic H-CT data can be efficiently produced, greatly reducing the costs associated with physical H-CT scans. Furthermore, successfully approximating the encoding operator for the H-CT system enables quick assessment of H-CT behavior for various applications in high-performance reconstruction, sensitivity analysis, and machine learning.

More Details

High-fidelity calibration and characterization of a spectral computed tomography system

Proceedings of SPIE - The International Society for Optical Engineering

Gallegos, Isabel; Dalton, Gabriella; Stohn, Adriana M.; Koundinyan, Srivathsan; Thompson, Kyle; Jimenez, Edward S.

Sandia National Laboratories has developed a model characterizing the nonlinear encoding operator of the world's first hyperspectral x-ray computed tomography (H-CT) system as a sequence of discrete-to-discrete, linear image system matrices across unique and narrow energy windows. In fields such as national security, industry, and medicine, H-CT has various applications in the non-destructive analysis of objects such as material identification, anomaly detection, and quality assurance. However, many approaches to computed tomography (CT) make gross assumptions about the image formation process to apply post-processing and reconstruction techniques that lead to inferior data, resulting in faulty measurements, assessments, and quantifications. To abate this challenge, Sandia National Laboratories has modeled the H-CT system through a set of point response functions, which can be used for calibration and anaylsis of the real-world system. This work presents the numerical method used to produce the model through the collection of data needed to describe the system; the parameterization used to compress the model; and the decompression of the model for computation. By using this linear model, large amounts of accurate synthetic H-CT data can be efficiently produced, greatly reducing the costs associated with physical H-CT scans. Furthermore, successfully approximating the encoding operator for the H-CT system enables quick assessment of H-CT behavior for various applications in high-performance reconstruction, sensitivity analysis, and machine learning.

More Details

Big-Data Multi-Energy Iterative Volumetric Reconstruction Methods for As-Built Validation & Verification Applications

Jimenez, Edward S.

This document archives the results developed by the Lab Directed Research and Development (LDRD) project sponsored by Sandia National Laboratories (SNL). In this work, it is shown that SNL has developed the first known high-energy hyperspectral computed tomography system for industrial and security applications. The main results gained from this work include dramatic beam-hardening artifact reduction by using the hyperspectral reconstruction as a bandpass filter without the need for any other computation or pre-processing; additionally, this work demonstrated the ability to use supervised and unsupervised learning methods on the hyperspectral reconstruction data for the application of materials characterization and identification which is not possible using traditional computed tomography systems or approaches.

More Details

Unsupervised learning methods to perform material identification tasks on spectral computed tomography data

Proceedings of SPIE - The International Society for Optical Engineering

Gallegos, Isabel; Koundinyan, Srivathsan; Suknot, April; Jimenez, Edward S.; Thompson, Kyle; Goodner, Ryan N.

Sandia National Laboratories has developed a method that applies machine learning methods to high-energy spectral X-ray computed tomography data to identify material composition for every reconstructed voxel in the field-of-view. While initial experiments led by Koundinyan et al. demonstrated that supervised machine learning techniques perform well in identifying a variety of classes of materials, this work presents an unsupervised approach that differentiates isolated materials with highly similar properties, and can be applied on spectral computed tomography data to identify materials more accurately compared to traditional performance. Additionally, if regions of the spectrum for multiple voxels become unusable due to artifacts, this method can still reliably perform material identification. This enhanced capability can tremendously impact fields in security, industry, and medicine that leverage non-destructive evaluation for detection, verification, and validation applications.

More Details

Exploring mediated reality to approximate X-ray attenuation coefficients from radiographs

Proceedings of SPIE the International Society for Optical Engineering

Jimenez, Edward S.; Orr, Laurel J.; Morgan, Megan L.; Thompson, Kyle

Estimation of the x-ray attenuation properties of an object with respect to the energy emitted from the source is a challenging task for traditional Bremsstrahlung sources. This exploratory work attempts to estimate the x-ray attenuation profile for the energy range of a given Bremsstrahlung profile. Previous work has shown that calculating a single effective attenuation value for a polychromatic source is not accurate due to the non-linearities associated with the image formation process. Instead, we completely characterize the imaging system virtually and utilize an iterative search method/constrained optimization technique to approximate the attenuation profile of the object of interest. This work presents preliminary results from various approaches that were investigated. The early results illustrate the challenges associated with these techniques and the potential for obtaining an accurate estimate of the attenuation profile for objects composed of homogeneous materials.

More Details

Irregular large-scale computed tomography on multiple graphics processors improves energy-efficiency metrics for industrial applications

Proceedings of SPIE - The International Society for Optical Engineering

Jimenez, Edward S.; Goodman, Eric; Park, Ryeojin; Orr, Laurel J.; Thompson, Kyle

This paper will investigate energy-efficiency for various real-world industrial computed-tomography reconstruction algorithms, both CPU- and GPU-based implementations. This work shows that the energy required for a given reconstruction is based on performance and problem size. There are many ways to describe performance and energy efficiency, thus this work will investigate multiple metrics including performance-per-watt, energy-delay product, and energy consumption. This work found that irregular GPU-based approaches1 realized tremendous savings in energy consumption when compared to CPU implementations while also significantly improving the performanceper- watt and energy-delay product metrics. Additional energy savings and other metric improvement was realized on the GPU-based reconstructions by improving storage I/O by implementing a parallel MIMD-like modularization of the compute and I/O tasks.

More Details

Exploring mediated reality to approximate X-ray attenuation coefficients from radiographs

Proceedings of SPIE - The International Society for Optical Engineering

Jimenez, Edward S.; Orr, Laurel J.; Morgan, Megan L.; Thompson, Kyle

Estimation of the x-ray attenuation properties of an object with respect to the energy emitted from the source is a challenging task for traditional Bremsstrahlung sources. This exploratory work attempts to estimate the x-ray attenuation profile for the energy range of a given Bremsstrahlung profile. Previous work has shown that calculating a single effective attenuation value for a polychromatic source is not accurate due to the non-linearities associated with the image formation process. Instead, we completely characterize the imaging system virtually and utilize an iterative search method/constrained optimization technique to approximate the attenuation profile of the object of interest. This work presents preliminary results from various approaches that were investigated. The early results illustrate the challenges associated with these techniques and the potential for obtaining an accurate estimate of the attenuation profile for objects composed of homogeneous materials.

More Details

High performance graphics processor based computed tomography reconstruction algorithms for nuclear and other large scale applications

Jimenez, Edward S.; Orr, Laurel J.; Thompson, Kyle

The goal of this work is to develop a fast computed tomography (CT) reconstruction algorithm based on graphics processing units (GPU) that achieves significant improvement over traditional central processing unit (CPU) based implementations. The main challenge in developing a CT algorithm that is capable of handling very large datasets is parallelizing the algorithm in such a way that data transfer does not hinder performance of the reconstruction algorithm. General Purpose Graphics Processing (GPGPU) is a new technology that the Science and Technology (S&T) community is starting to adopt in many fields where CPU-based computing is the norm. GPGPU programming requires a new approach to algorithm development that utilizes massively multi-threaded environments. Multi-threaded algorithms in general are difficult to optimize since performance bottlenecks occur that are non-existent in single-threaded algorithms such as memory latencies. If an efficient GPU-based CT reconstruction algorithm can be developed; computational times could be improved by a factor of 20. Additionally, cost benefits will be realized as commodity graphics hardware could potentially replace expensive supercomputers and high-end workstations. This project will take advantage of the CUDA programming environment and attempt to parallelize the task in such a way that multiple slices of the reconstruction volume are computed simultaneously. This work will also take advantage of the GPU memory by utilizing asynchronous memory transfers, GPU texture memory, and (when possible) pinned host memory so that the memory transfer bottleneck inherent to GPGPU is amortized. Additionally, this work will take advantage of GPU-specific hardware (i.e. fast texture memory, pixel-pipelines, hardware interpolators, and varying memory hierarchy) that will allow for additional performance improvements.

More Details

High-performance computing applied to semantic databases

Jimenez, Edward S.; Goodman, Eric

To-date, the application of high-performance computing resources to Semantic Web data has largely focused on commodity hardware and distributed memory platforms. In this paper we make the case that more specialized hardware can offer superior scaling and close to an order of magnitude improvement in performance. In particular we examine the Cray XMT. Its key characteristics, a large, global shared-memory, and processors with a memory-latency tolerant design, offer an environment conducive to programming for the Semantic Web and have engendered results that far surpass current state of the art. We examine three fundamental pieces requisite for a fully functioning semantic database: dictionary encoding, RDFS inference, and query processing. We show scaling up to 512 processors (the largest configuration we had available), and the ability to process 20 billion triples completely in-memory.

More Details
112 Results
112 Results