The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0.3 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sen- sitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
The UQ Toolkit (UQTk) is a collection of libraries and tools for the quantification of uncertainty in numerical model predictions. Version 3.0 offers intrusive and non-intrusive methods for propagating input uncertainties through computational models, tools for sensitivity analysis, methods for sparse surrogate construction, and Bayesian inference tools for inferring parameters from experimental data. This manual discusses the download and installation process for UQTk, provides pointers to the UQ methods used in the toolkit, and describes some of the examples provided with the toolkit.
Demonstrate algorithm-based resilience to silent data corruption (SDC) and hard faults in a task-based domain-decomposition preconditioner for elliptic PDEs.
Explore scalability of a resilient task-based domain decomposition preconditioner for elliptic PDEs. Selective reliability to study the impact of different levels of simulated SDC and hard faults. Explore interplay between the application resilience, and the role of the server-client programming model.