Publications

Results 3351–3375 of 9,998

Search results

Jump to search filters

A Future with Quantum Machine Learning

Computer

Debenedictis, Erik

Could combining quantum computing and machine learning with Moore's law produce a true 'rebooted computer'? This article posits that a three-technology hybrid-computing approach might yield sufficiently improved answers to a broad class of problems such that energy efficiency will no longer be the dominant concern.

More Details

Concurrent multiscale modeling of microstructural effects on localization behavior in finite deformation solid mechanics

Computational Mechanics

Alleman, Coleman; Foulk, James W.; Mota, Alejandro; Lim, Hojun; Littlewood, David J.

The heterogeneity in mechanical fields introduced by microstructure plays a critical role in the localization of deformation. To resolve this incipient stage of failure, it is therefore necessary to incorporate microstructure with sufficient resolution. On the other hand, computational limitations make it infeasible to represent the microstructure in the entire domain at the component scale. In this study, the authors demonstrate the use of concurrent multiscale modeling to incorporate explicit, finely resolved microstructure in a critical region while resolving the smoother mechanical fields outside this region with a coarser discretization to limit computational cost. The microstructural physics is modeled with a high-fidelity model that incorporates anisotropic crystal elasticity and rate-dependent crystal plasticity to simulate the behavior of a stainless steel alloy. The component-scale material behavior is treated with a lower fidelity model incorporating isotropic linear elasticity and rate-independent J2 plasticity. The microstructural and component scale subdomains are modeled concurrently, with coupling via the Schwarz alternating method, which solves boundary-value problems in each subdomain separately and transfers solution information between subdomains via Dirichlet boundary conditions. In this study, the framework is applied to model incipient localization in tensile specimens during necking.

More Details

Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks

IEEE Transactions on Mobile Computing

Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano; Phillips, Cynthia A.; Turgut, Damla

We consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending on the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a 'lawn mower'-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.

More Details
Results 3351–3375 of 9,998
Results 3351–3375 of 9,998