Publications

Results 6851–6900 of 9,998

Search results

Jump to search filters

LDRD final report :

McLendon, William C.; Brost, Randolph B.

Modeling geospatial information with semantic graphs enables search for sites of interest based on relationships between features, without requiring strong a priori models of feature shape or other intrinsic properties. Geospatial semantic graphs can be constructed from raw sensor data with suitable preprocessing to obtain a discretized representation. This report describes initial work toward extending geospatial semantic graphs to include temporal information, and initial results applying semantic graph techniques to SAR image data. We describe an efficient graph structure that includes geospatial and temporal information, which is designed to support simultaneous spatial and temporal search queries. We also report a preliminary implementation of feature recognition, semantic graph modeling, and graph search based on input SAR data. The report concludes with lessons learned and suggestions for future improvements.

More Details

Perspectives for computational modeling of cell replacement for neurological disorders

Frontiers in Computational Neuroscience

Aimone, James B.

Mathematical modeling of anatomically-constrained neural networks has provided significant insights regarding the response of networks to neurological disorders or injury. A logical extension of these models is to incorporate treatment regimens to investigate network responses to intervention. The addition of nascent neurons from stem cell precursors into damaged or diseased tissue has been used as a successful therapeutic tool in recent decades. Interestingly, models have been developed to examine the incorporation of new neurons into intact adult structures, particularly the dentate granule neurons of the hippocampus. These studies suggest that the unique properties of maturing neurons, can impact circuit behavior in unanticipated ways. In this perspective, we review the current status of models used to examine damaged CNS structures with particular focus on cortical damage due to stroke. Secondly, we suggest that computational modeling of cell replacement therapies can be made feasible by implementing approaches taken by current models of adult neurogenesis. The development of these models is critical for generating hypotheses regarding transplant therapies and improving outcomes by tailoring transplants to desired effects.

More Details

The impact of hybrid-core processors on MPI message rate

ACM International Conference Proceeding Series

Barrett, Brian B.; Brightwell, Ronald B.; Hammond, Simon D.; Hemmert, Karl S.

Power and energy concerns are motivating chip manufacturers to consider future hybrid-core processor designs that combine a small number of traditional cores optimized for single-thread performance with a large number of simpler cores optimized for throughput performance. This trend is likely to impact the way compute resources for network protocol processing functions are allocated and managed. In particular, the performance of MPI match processing is critical to achieving high message throughput. In this paper, we analyze the ability of simple and more complex cores to perform MPI matching operations for various scenarios in order to gain insight into how MPI implementations for future hybrid-core processors should be designed.

More Details

Kokkos: Enabling performance portability across manycore architectures

Proceedings - 2013 Extreme Scaling Workshop, XSW 2013

Edwards, Harold C.; Trott, Christian R.

The manycore revolution in computational hardware can be characterized by increasing thread counts, decreasing memory per thread, and architecture specific performance constraints for memory access patterns. High performance computing (HPC) on emerging many core architectures requires codes to exploit every opportunity for thread-level parallelism and satisfy conflicting performance constraints. We developed the Kokkos C++ library to provide scientific and engineering codes with a user accessible many core performance portable programming model. The two foundational abstractions of Kokkos are (1) dispatch work to a many core device for parallel execution and (2) manage multidimensional arrays with polymorphic layouts. The integration of these abstractions enables users' code to satisfy multiple architecture specific memory access pattern performance constraints without having to modify their source code. In this paper we describe the Kokkos abstractions, summarize its application programmer interface (API), and present performance results for a molecular dynamics computational kernel and finite element mini-application. © 2013 IEEE.

More Details

Scalable matrix computations on large scale-free graphs using 2D graph partitioning

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Boman, Erik G.; Devine, Karen D.; Rajamanickam, Sivasankaran R.

Scalable parallel computing is essential for processing large scale-free (power-law) graphs. The distribution of data across processes becomes important on distributed-memory computers with thousands of cores. It has been shown that two dimensional layouts (edge partitioning) can have significant advantages over traditional one-dimensional layouts. However, simple 2D block distribution does not use the structure of the graph, and more advanced 2D partitioning methods are too expensive for large graphs. We propose a new two-dimensional partitioning algorithm that combines graph partitioning with 2D block distribution. The computational cost of the algorithm is essentially the same as 1D graph partitioning. We study the performance of sparse matrix-vector multiplication (SpMV) for scale-free graphs from the web and social networks using several different partitioners and both 1D and 2D data layouts. We show that SpMV run time is reduced by exploiting the graph's structure. Contrary to popular belief, we observe that current graph and hypergraph partitioners often yield relatively good partitions on scale-free graphs. We demonstrate that our new 2D partitioning method consistently outperforms the other methods considered, for both SpMV and an eigensolver, on matrices with up to 1.6 billion nonzeros using up to 16,384 cores. Copyright 2013 ACM.

More Details

A many-electron tight binding method for the analysis of quantum dot systems

Journal of Applied Physics

Nielsen, Erik N.; Rahman, Rajib R.; Muller, Richard P.

We present a method which computes many-electron energies and eigenfunctions by a full configuration interaction, which uses a basis of atomistic tight-binding wave functions. This approach captures electron correlation as well as atomistic effects, and is well suited to solid state quantum dot systems containing few electrons, where valley physics and disorder contribute significantly to device behavior. Results are reported for a two-electron silicon double quantum dot as an example. © 2012 American Institute of Physics.

More Details

Use of a SPAR-H bayesian network for predicting human error probabilities with missing observations

11th International Probabilistic Safety Assessment and Management Conference and the Annual European Safety and Reliability Conference 2012, PSAM11 ESREL 2012

Groth, Katrina G.; Swiler, Laura P.

Many of the Performance Shaping Factors (PSFs) used in Human Reliability Analysis (HRA) methods are not directly measurable or observable. Methods like SPAR-H require the analyst to assign values for all of the PSFs, regardless of the PSF observability; this introduces subjectivity into the human error probability (HEP) calculation. One method to reduce the subjectivity of HRA estimates is to formally incorporate information about the probability of the PSFs into the methodology for calculating the HEP. This can be accomplished by encoding prior information in a Bayesian Network (BN) and updating the network using available observations. We translated an existing HRA methodology, SPAR-H, into a Bayesian Network to demonstrate the usefulness of the BN framework. We focus on the ability to incorporate prior information about PSF probabilities into the HRA process. This paper discusses how we produced the model by combining information from two sources, and how the BN model can be used to estimate HEPs despite missing observations. Use of the prior information allows HRA analysts to use partial information to estimate HEPs, and to rely on the prior information (from data or cognitive literature) when they are unable to gather information about the state of a particular PSF. The SPAR-H BN model is a starting point for future research activities to create a more robust HRA BN model using data from multiple sources.

More Details

A comparative critical analysis of modern task-parallel runtimes

Wheeler, Kyle B.; Stark, Dylan S.

The rise in node-level parallelism has increased interest in task-based parallel runtimes for a wide array of application areas. Applications have a wide variety of task spawning patterns which frequently change during the course of application execution, based on the algorithm or solver kernel in use. Task scheduling and load balance regimes, however, are often highly optimized for specific patterns. This paper uses four basic task spawning patterns to quantify the impact of specific scheduling policy decisions on execution time. We compare the behavior of six publicly available tasking runtimes: Intel Cilk, Intel Threading Building Blocks (TBB), Intel OpenMP, GCC OpenMP, Qthreads, and High Performance ParalleX (HPX). With the exception of Qthreads, the runtimes prove to have schedulers that are highly sensitive to application structure. No runtime is able to provide the best performance in all cases, and those that do provide the best performance in some cases, unfortunately, provide extremely poor performance when application structure does not match the schedulers assumptions.

More Details

Simulating neural systems with Xyce

Schiek, Richard S.; Thornquist, Heidi K.; Warrender, Christina E.; Mei, Ting M.; Teeter, Corinne M.; Aimone, James B.

Sandias parallel circuit simulator, Xyce, can address large scale neuron simulations in a new way extending the range within which one can perform high-fidelity, multi-compartment neuron simulations. This report documents the implementation of neuron devices in Xyce, their use in simulation and analysis of neuron systems.

More Details
Results 6851–6900 of 9,998
Results 6851–6900 of 9,998