Publications

Results 51–75 of 227

Search results

Jump to search filters

Editorial: The World Is Nonlocal

Journal of Peridynamics and Nonlocal Modeling

Silling, Stewart A.

Nonlocal modeling has come a long way. Researchers in the continuum mechanics and computational mechanics communities increasingly recognize that nonlocality is critical in realistic mathematical models of many aspects of the physical world. Physical interaction over a finite distance is fundamental at the atomic and nanoscale level, in which atoms and molecules interact through multibody potentials. Long-range forces partially determine the mechanics of surfaces and the behavior of dissolved molecules and suspended particles in a fluid. Nonlocality is therefore a vital feature of any continuum model that represents these physical systems at small length scales.

More Details

Determination of ballistic limit of skin-stringer panels using nonlinear, strain-rate dependent peridynamics

AIAA Scitech 2019 Forum

Cuenca, Fernando; Weckner, Olaf; Silling, Stewart A.; Rassaian, Mostafa

Significant testing is required to design and certify primary aircraft structures subject to High Energy Dynamic Impact (HEDI) events; current work under the NASA Advanced Composites Consortium (ACC) HEDI Project seeks to determine the state-of-the-art of dynamic fracture simulations for composite structures in these events. This paper discusses one of three Progressive Damage Analysis (PDA) methods selected for the second phase of the NASA ACC project: peridynamics, through its implementation in EMU. A brief discussion of peridynamic theory is provided, including the effects of nonlinearity and strain rate dependence of the matrix followed by a blind prediction and test-analysis correlation for ballistic impact testing performed for configured skin-stringer panels.

More Details

Modeling shockwaves and impact phenomena with Eulerian peridynamics

International Journal of Impact Engineering

Silling, Stewart A.; Parks, Michael L.; Kamm, James R.; Weckner, Olaf; Rassaian, Mostafa

Most previous development of the peridynamic theory has assumed a Lagrangian formulation, in which the material model refers to an undeformed reference configuration. In the present work, an Eulerian form of material modeling is developed, in which bond forces depend only on the positions of material points in the deformed configuration. The formulation is consistent with the thermodynamic form of the peridynamic model and is derivable from a suitable expression for the free energy of a material. It is shown that the resulting formulation of peridynamic material models can be used to simulate strong shock waves and fluid response in which very large deformations make the Lagrangian form unsuitable. The Eulerian capability is demonstrated in numerical simulations of ejecta from a wavy free surface on a metal subjected to strong shock wave loading. The Eulerian and Lagrangian contributions to bond force can be combined in a single material model, allowing strength and fracture under tensile or shear loading to be modeled consistently with high compressive stresses. This capability is demonstrated in numerical simulation of bird strike against an aircraft, in which both tensile fracture and high pressure response are important.

More Details

Peridynamic Theory as a New Paradigm for Multiscale Modeling of Sintering

Silling, Stewart A.; Abdeljawad, Fadi; Ford, Kurtis R.

Sintering is a component fabrication process in which powder is compacted by pressing or some other means and then held at elevated temperature for a period of hours. The powder grains bond with each other, leading to the formation of a solid component with much lower porosity, and therefore higher density and higher strength, than the original powder compact. In this project, we investigated a new way of computationally modeling sintering at the length scale of grains. The model uses a high-fidelity, three-dimensional representation with a few hundred nodes per grain. The numerical model solves the peridynamic equations, in which nonlocal forces allow representation of the attraction, adhesion, and mass diffusion between grains. The deformation of the grains is represented through a viscoelastic material model. The project successfully demonstrated the use of this method to reproduce experimentally observed features of material behavior in sintering, including densification, the evolution of microstructure, and the occurrence of random defects in the sintered solid.

More Details
Results 51–75 of 227
Results 51–75 of 227