Effects of 3He in ErT2 and Pd
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in the Journal of Chemistry and Materials.
In this work, we investigated the controlled growth of nanocrystalline CdE (E = S, Se, and Te) via the pyrolysis of CdO and Cd(O2CCH3)2 precursors, at the specific Cd to E mole ratio of 0.67 to 1. The experimental results reveal that while the growth of CdS produces only a spherical morphology, CdSe and CdTe exhibit rod-like and tetrapod-like morphologies of temporally controllable aspect ratios. Over a 7200 s time period, CdS spheres grew from 4 nm (15 s aliquot) to 5 nm, CdSe nanorods grew from dimensions of 10.8 x 3.6 nm (15 s aliquot) to 25.7 x 11.2 nm, and CdTe tetrapods with arms 15 x 3.5 nm (15 s aliquot) grew into a polydisperse mixture of spheres, rods, and tetrapods on the order of 20 to 80 nm. Interestingly, long tracks of self-assembled CdSe nanorods (3.5 x 24 nm) of over one micron in length were observed. The temporal growth for each nanocrystalline material was monitored by UV-VIS spectroscopy, transmission electron spectroscopy, and further characterized by powder X-ray diffraction. This study has elucidated the vastly different morphologies available for CdS, CdSe, and CdTe during the first 7200 s after injection of the desired chalcogenide.