Publications / Conference

Verification and validation as applied epistemology

McNamara, Laura A.; Trucano, Timothy G.; Backus, George A.

Since 1998, the Department of Energy/NNSA National Laboratories have invested millions in strategies for assessing the credibility of computational science and engineering (CSE) models used in high consequence decision making. The answer? There is no answer. There's a process--and a lot of politics. The importance of model evaluation (verification, validation, uncertainty quantification, and assessment) increases in direct proportion to the significance of the model as input to a decision. Other fields, including computational social science, can learn from the experience of the national laboratories. Some implications for evaluating 'low cognition agents'. Epistemology considers the question, How do we know what we [think we] know? What makes Western science special in producing reliable, predictive knowledge about the world? V&V takes epistemology out of the realm of thought and puts it into practice. What is the role of modeling and simulation in the production of reliable, credible scientific knowledge about the world? What steps, investments, practices do I pursue to convince myself that the model I have developed is producing credible knowledge?