Publications / Other Report

30 cm Drop Tests

Kalinina, Elena A.; Ammerman, Douglas J.; Grey, Carissa A.; Arviso, Michael A.; Wright, Catherine W.; Lujan, Lucas A.; Flores, Gregg J.; Saltzstein, Sylvia J.

The data from the multi-modal transportation test conducted in 2017 demonstrated that the inputs from the shock events during all transport modes (truck, rail, and ship) were amplified from the cask to the spent commercial nuclear fuel surrogate assemblies. These data do not support common assumption that the cask content experiences the same accelerations as the cask itself. This was one of the motivations for conducting 30 cm drop tests. The goal of the 30 cm drop test is to measure accelerations and strains on the surrogate spent nuclear fuel assembly and to determine whether the fuel rods can maintain their integrity inside a transportation cask when dropped from a height of 30 cm. The 30 cm drop is the remaining NRC normal conditions of transportation regulatory requirement (10 CFR 71.71) for which there are no data on the actual surrogate fuel. Because the full-scale cask and impact limiters were not available (and their cost was prohibitive), it was proposed to achieve this goal by conducting three separate tests. This report describes the first two tests — the 30 cm drop test of the 1/3 scale cask (conducted in December 2018) and the 30 cm drop of the full-scale dummy assembly (conducted in June 2019). The dummy assembly represents the mass of a real spent nuclear fuel assembly. The third test (to be conducted in the spring of 2020) will be the 30 cm drop of the full-scale surrogate assembly. The surrogate assembly represents a real full-scale assembly in physical, material, and mechanical characteristics, as well as in mass.