Multiscale requirements in modeling cell membranes
Abstract not provided.
Abstract not provided.
Calore is the ASC code developed to model steady and transient thermal diffusion with chemistry and dynamic enclosure radiation. An integral part of the software development process is code verification, which addresses the question 'Are we correctly solving the model equations'? This process aids the developers in that it identifies potential software bugs and gives the thermal analyst confidence that a properly prepared input will produce satisfactory output. Grid refinement studies have been performed on problems for which we have analytical solutions. In this talk, the code verification process is overviewed and recent results are presented. Recent verification studies have focused on transient nonlinear heat conduction and verifying algorithms associated with (tied) contact and adaptive mesh refinement. In addition, an approach to measure the coverage of the verification test suite relative to intended code applications is discussed.
Three complex target penetration scenarios are run with a model developed by the U. S. Army Engineer Waterways Experiment Station, called PENCURV. The results are compared with both test data and a Zapotec model to evaluate PENCURV's suitability for conducting broad-based scoping studies on a variety of targets to give first order solutions to the problem of G-loading. Under many circumstances, the simpler, empirically based PENCURV model compares well with test data and the much more sophisticated Zapotec model. The results suggest that, if PENCURV were enhanced to include rotational acceleration in its G-loading computations, it would provide much more accurate solutions for a wide variety of penetration problems. Data from an improved PENCURV program would allow for faster, lower cost optimization of targets, test parameters and penetration bodies as Sandia National Laboratories continues in its evaluation of the survivability requirements for earth penetrating sensors and weapons.
There is currently a large research and development effort within the high-performance computing community on advanced parallel programming models. This research can potentially have an impact on parallel applications, system software, and computing architectures in the next several years. Given Sandia's expertise and unique perspective in these areas, particularly on very large-scale systems, there are many areas in which Sandia can contribute to this effort. This technical report provides a survey of past and present parallel programming model research projects and provides a detailed description of the Partitioned Global Address Space (PGAS) programming model. The PGAS model may offer several improvements over the traditional distributed memory message passing model, which is the dominant model currently being used at Sandia. This technical report discusses these potential benefits and outlines specific areas where Sandia's expertise could contribute to current research activities. In particular, we describe several projects in the areas of high-performance networking, operating systems and parallel runtime systems, compilers, application development, and performance evaluation.
We describe three MATLAB classes for manipulating tensors in order to allow fast algorithm prototyping. A tensor is a multidimensional or N-way array. We present a tensor class for manipulating tensors which allows for tensor multiplication and 'matricization.' We have further added two classes for representing tensors in decomposed format: cp{_}tensor and tucker{_}tensor. We demonstrate the use of these classes by implementing several algorithms that have appeared in the literature.
Abstract not provided.
Proposed for publication in IEEE Transactions on Parallel and Distributed Systems.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Geostatistical and non-geostatistical noise filtering methodologies, factorial kriging and a low-pass filter, and a region growing method are applied to analytic signal magnetometer images at two UXO contaminated sites to delineate UXO target areas. Overall delineation performance is improved by removing background noise. Factorial kriging slightly outperforms the low-pass filter but there is no distinct difference between them in terms of finding anomalies of interest.
Abstract not provided.
Two 100 kW min{sup -1} (1.67 kW h{sup -1}) Li-ion battery energy storage systems (BESS) are described. The systems include a high-power Li-ion battery and a 100 kW power conditioning system (PCS). The battery consists of 12 modules of 12 series-connected Saft Li-ion VL30P cells. The stored energy of the battery ranges from 1.67 to 14 kW h{sup -1} and has an operating voltage window of 515-405 V (dc). Two complete systems were designed, built and successfully passed factory acceptance testing after which each was deployed in a field demonstration. The first demonstration used the system to supplement distributed microturbine generation and to provide load following capability. The system was run at its rated power level for 3 min, which exceeded the battery design goal by a factor of 3. The second demonstration used another system as a stand-alone uninterrupted power supply (UPS). The system was available (online) for 1146 h and ran for over 2 min.
Abstract not provided.
We give processor-allocation algorithms for grid architectures, where the objective is to select processors from a set of available processors to minimize the average number of communication hops. The associated clustering problem is as follows: Given n points in R{sup d}, find a size-k subset with minimum average pairwise L{sub 1} distance.We present a natural approximation algorithm and show that it is a 7/4-approximation for 2D grids. In d dimensions, the approximation guarantee is 2 - 1/2d, which is tight. We also give a polynomial-time approximation scheme (PTAS) for constant dimension d and report on experimental results.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
One critical aspect of any denuclearization of the Democratic People's Republic of Korea (DPRK) involves dismantlement of its nuclear facilities and management of their associated radioactive wastes. The decommissioning problem for its two principal operational plutonium facilities at Yongbyun, the 5MWe nuclear reactor and the Radiochemical Laboratory reprocessing facility, alone present a formidable challenge. Dismantling those facilities will create radioactive waste in addition to existing inventories of spent fuel and reprocessing wastes. Negotiations with the DPRK, such as the Six Party Talks, need to appreciate the enormous scale of the radioactive waste management problem resulting from dismantlement. The two operating plutonium facilities, along with their legacy wastes, will result in anywhere from 50 to 100 metric tons of uranium spent fuel, as much as 500,000 liters of liquid high-level waste, as well as miscellaneous high-level waste sources from the Radiochemical Laboratory. A substantial quantity of intermediate-level waste will result from disposing 600 metric tons of graphite from the reactor, an undetermined quantity of chemical decladding liquid waste from reprocessing, and hundreds of tons of contaminated concrete and metal from facility dismantlement. Various facilities for dismantlement, decontamination, waste treatment and packaging, and storage will be needed. The shipment of spent fuel and liquid high level waste out of the DPRK is also likely to be required. Nuclear facility dismantlement and radioactive waste management in the DPRK are all the more difficult because of nuclear nonproliferation constraints, including the call by the United States for 'complete, verifiable and irreversible dismantlement', or 'CVID'. It is desirable to accomplish dismantlement quickly, but many aspects of the radioactive waste management cannot be achieved without careful assessment, planning and preparation, sustained commitment, and long completion times. The radioactive waste management problem in fact offers a prospect for international participation to engage the DPRK constructively. DPRK nuclear dismantlement, when accompanied with a concerted effort for effective radioactive waste management, can be a mutually beneficial goal.
Proposed for publication in Surface Science.
Abstract not provided.
Abstract not provided.
Proposed for publication in Science.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.