Publications

Results 81951–81975 of 96,771

Search results

Jump to search filters

Features of West Hackberry SPR Caverns and Internal Structure Of the Salt Dome

Munson, Darrell E.

The intent of this report is to examine the internal structure of the West Hackberry salt dome utilizing the information from the geometric configuration of the internal cavern surfaces obtained from graphical representations of sonar survey data. In a general sense, the caverns of West Hackberry are remarkable in the symmetry of their shapes. There are only rather moderate deviations from what would be considered an ideal cylindrical solution mining geometry in these caverns. This finding is in marked contrast to the directional solutioning found in the elliptical cross sectioned, sometimes winged, caverns of Big Hill. None of the persistent lineaments prevalent in Big Hill caverns are evident in West Hackberry caverns. Irregularities of the West Hackberry caverns are restricted to preferential solution formed pits and protuberances with moderate dimensions. In fact, the principal characteristic of West Hackberry caverns is the often large sections of smooth and cylindrical cavern wall. Differences in the cavern characteristics between West Hackberry and Big Hill suggest that the former dome is quite homogeneous, while the latter still retains strong remnants of the interbeds of the original bedded Louann salt. One possible explanation is that the source of the two domes, while both from the Louann mother salt, differs. While the source of the Big Hill dome is directly from the mother salt bed, it appears that the West Hackberry arises from a laterally extruded sill of the mother salt. Consequently, the amount of deformation, and hence, mixing of the salt and interbed material in the extruded sill is significantly greater than would be the case for the directly formed diapir. In West Hackberry, remnants of interbeds apparently no longer exist. An important aspect of the construction of the West Hackberry caverns is the evidence of an attempt to use a uniform solutioning construction practice. This uniformity involved the utilization of single well solutioning and the consistent physical location of the inlet/outlet tubing in each solutioning stage, although the process did evolve with time as would be expected in a large construction project. In this study of the construction of the West Hackberry caverns, it was possible to examine the apparent effects of flow rate (solutioning rate) and salt removal quantities during each of the solutioning stages of construction. Interestingly, there appeared to be no real influence of these factors on the details of the cavern characteristics. Any of the flow rates or removal quantities could produce significant irregularities at discrete cavern wall locations, whether or not these irregularities influence the cavern behavior remains unclear. It seems that subsequent solutioning stages could either remove irregularities from earlier stages or generate irregularities of their own. In the study, no apparent influence of the material factors of creep resistance or impurity content of the salt could be found. As has been previously speculated from the earlier study of Big Hill caverns, some irregularities of the cavern wall are thought to be the formation sites of potential salt falls, this thought pertains to the West Hackberry caverns, as well. Considering the extent of the West Hackberry cavern facility, the relative uniformity of the solution mined caverns throughout the facility is impressive. This uniformity is certainly the result of homogeneity of the salt dome, and the uniformity of the solutioning practice in these single well caverns.

More Details

Accelerated aging of solid lubricants for the W76-1 TSL : effects of polymer outgassing

Dugger, Michael T.; Huffman, Elizabeth M.; Wallace, William O.

The behavior of MoS{sub 2} lubricants intended for the W76-1 TSL was evaluated after 17 and 82 thermal cycles, each lasting seven days and including a low temperature of -35 C and a high temperature of 93 C, in a sealed container containing organic materials. The MoS{sub 2} was applied by tumbling with MoS{sub 2} powder and steel pins (harperized), or by spraying with a resin binder (AS Mix). Surface composition measurements indicated an uptake of carbon and silicon on the lubricant surfaces after aging. Oxidation of the MoS{sub 2} on harperized coupons, where enough MoS{sub 2} was present at the surface to result in significant Mo and S concentrations, was found to be minimal for the thermal cycles in an atmosphere of primarily nitrogen. Bare steel surfaces showed a reduction in friction for exposed coupons compared to control coupons stored in nitrogen, at least for the initial cycles of sliding until the adsorbed contaminants were worn away. Lubricated surfaces showed no more than a ten percent increase in steady-state friction coefficient after exposure. Initial coefficient of friction was up to 250 percent higher than steady-state for AS Mix films on H950 coupons after 82 thermal cycles. However, the friction coefficient exhibited by lubricated coupons was never greater than 0.25, and more often less than 0.15, even after the accelerated aging exposures.

More Details

Evaluation of innovative arsenic treatment technologies :the arsenic water technology partnership vendors forums summary report

Siegel, Malcolm D.; McConnell, Paul E.; Everett, Randy L.

The lowering of the drinking water standard (MCL) for arsenic from 50 {micro}g/L to 10 {micro}g/L in January 2006 could lead to significant increases in the cost of water for many rural systems throughout the United States. The Arsenic Water Technology Partnership (AWTP), a collaborative effort of Sandia National Laboratories, the Awwa Research Foundation (AwwaRF) and WERC: A Consortium for Environmental Education and Technology Development, was formed to address this problem by developing and testing novel treatment technologies that could potentially reduce the costs of arsenic treatment. As a member of the AWTP, Sandia National Laboratories evaluated cutting-edge commercial products in three annual Arsenic Treatment Technology Vendors Forums held during the annual New Mexico Environmental Health Conferences (NMEHC) in 2003, 2004 and 2005. The Forums were comprised of two parts. At the first session, open to all conference attendees, commercial developers of innovative treatment technologies gave 15-minute talks that described project histories demonstrating the effectiveness of their products. During the second part, these same technologies were evaluated and ranked in closed sessions by independent technical experts for possible use in pilot-scale field demonstrations being conducted by Sandia National Laboratories. The results of the evaluations including numerical rankings of the products, links to company websites and copies of presentations made by the representatives of the companies are posted on the project website at http://www.sandia.gov/water/arsenic.htm. This report summarizes the contents of the website by providing brief descriptions of the technologies represented at the Forums and the results of the evaluations.

More Details
Results 81951–81975 of 96,771
Results 81951–81975 of 96,771