Publications

Results 96301–96350 of 99,299

Search results

Jump to search filters

Effect of fractures on repository dryout

Eaton, R.R.

Calculations of water flow through Yucca Mountain show significant dryout and water perching in the vicinity of the proposed nuclear waste repository. These calculations also show that the extent of the dryout and perched water zones is a strong function of the material characteristics which are used to represent the fracture zones. The results show that for 100 {mu}m fracture case appreciable dryout and perched regions exist. When 1 {mu}m fractures are used no dryout or perched regions are calculated.

More Details

Relation between static and dynamic rock properties in welded and nonwelded tuff

Price, Ronald H.

An integral part of the licensing procedure for the potential nuclear waste repository at Yucca Mountain, Nevada involves accurate prediction of the in situ rheology for design and construction of the facility and emplacement of the canisters containing radioactive waste. The data required as input to successful thermal and mechanical models of the behavior of the repository and surrounding lithologies include bulk density, grain density, porosity, compressional and shear wave velocities, elastic moduli, and compressional and tensile strengths. In this study a suite of experiments was performed on cores recovered from the USW-NRG-6 borehole drilled to support the Exploratory Studies Facility (ESF) at Yucca Mountain. USW-NRG-6 was drilled to a depth of 1100 feet through four thermal/mechanical units of Paintbrush tuff. A large data set has been collected on specimens recovered from borehole USW-NRG-6. Analysis of the results of these experiments showed that there is a correlation between fracture strength, Young`s modulus, compressional wave velocity and porosity. Additional scaling laws relating; static Young`s modulus and compressional wave velocity; and fracture strength and compressional wave velocity are promising. Since there are no other distinct differences in material properties, the scatter that is present at each fixed porosity suggests that the differences in the observed property can be related to the pore structure of the specimen. Image analysis of CT scans performed on each test specimen are currently underway to seek additional empirical relations to aid in refining the correlations between static and dynamic properties of tuff.

More Details

Scaling behavior of gas permeability measurements in volcanic tuffs

Tidwell, Vincent C.

One of the critical issues facing the Yucca Mountain site characterization and performance assessment programs is the manner in which property scaling is addressed. Property scaling becomes an issue whenever heterogeneous media properties are measured at one scale but applied at another. A research program has been established to challenge current understanding of property scaling with the aim of developing and testing models that describe scaling behavior in a quantitative manner. Scaling of constitutive rock properties is investigated through physical experimentation involving the collection of suites of gas-permeability data measured over a range of discrete scales. The approach is to systematically isolate those factors believed to influence property scaling and investigate their relative contributions to overall scaling behavior. Two blocks of tuff, each exhibiting differing heterogeneity structure, have recently been examined. Results of the investigation show very different scaling behavior, as exhibited by changes in the distribution functions and variograms, for the two tuff samples. Even for the relatively narrow range of measurement scales employed significant changes in the distribution functions, variograms, and summary statistics occurred. Because such data descriptors will likely play an important role in calculating effective media properties, these results demonstrate both the need to understand and accurately model scaling behavior.

More Details

An updated fracture-flow model for total-system performance assessment of Yucca Mountain

Gauthier, J.H.

Improvements have been made to the fracture-flow model being used in the total-system performance assessment of a potential high-level radioactive waste repository at Yucca Mountain, Nevada. The ``weeps model`` now includes (1) weeps of varied sizes, (2) flow-pattern fluctuations caused by climate change, and (3) flow-pattern perturbations caused by repository heat generation. Comparison with the original weeps model indicates that allowing weeps of varied sizes substantially reduces the number of weeps and the number of containers contacted by weeps. However, flow-pattern perturbations caused by either climate change or repository heat generation greatly increases the number of containers contacted by weeps. In preliminary total-system calculations, using a phenomenological container-failure and radionuclide-release model, the weeps model predicts that radionuclide releases from a high-level radioactive waste repository at Yucca Mountain will be below the EPA standard specified in 40 CFR 191, but that the maximum radiation dose to an individual could be significant. Specific data from the site are required to determine the validity of the weep-flow mechanism and to better determine the parameters to which the dose calculation is sensitive.

More Details

Development of stochastic indicator models of lithology, Yucca Mountain, Nevada

Rautman, Christopher A.

Indicator geostatistical techniques have been used to produce a number of fully three-dimensional stochastic simulations of large-scale lithologic categories at the Yucca Mountain site. Each realization reproduces the available drill hole data used to condition the simulation. Information is propagated away from each point of observation in accordance with a mathematical model of spatial continuity inferred through soft data taken from published geologic cross sections. Variations among the simulated models collectively represent uncertainty in the lithology at unsampled locations. These stochastic models succeed in capturing many major features of welded-nonwelded lithologic framework of Yucca Mountain. However, contacts between welded and nonwelded rock types for individual simulations appear more complex than suggested by field observation, and a number of probable numerical artifacts exist in these models. Many of the apparent discrepancies between the simulated models and the general geology of Yucca Mountain represent characterization uncertainty, and can be traced to the sparse site data used to condition the simulations. Several vertical stratigraphic columns have been extracted from the three-dimensional stochastic models for use in simplified total-system performance assessment exercises. Simple, manual adjustments are required to eliminate the more obvious simulation artifacts and to impose a secondary set of deterministic geologic features on the overall stratigraphic framework provided by the indictor models.

More Details

The effect of frequency on Young`s modulus and seismic wave attenuation

Price, Ronald H.

Laboratory experiments were performed to measure the effect of frequency, water-saturation, and strain amplitude on Young`s modulus and seismic wave attenuation on rock cores recovered on or near the site of a potential nuclear waste repository at Yucca Mountain, Nevada. The purpose of this investigation is to perform the measurements using four techniques: cyclic loading, waveform inversion, resonant bar, and ultrasonic velocity. The measurements ranged in frequency between 10{sup {minus}2} and 10{sup 6} Hz. For the dry specimens Young`s modulus and attenuation were independent of frequency; that is, all four techniques yielded nearly the same values for modulus and attenuation. For saturated specimens, a frequency dependence for both Young`s modulus and attenuation was observed. In general, saturation reduced Young`s modulus and increased seismic wave attenuation. The effect of strain amplitude on Young`s modulus and attenuation was measured using the cyclic loading technique at a frequency of 10{sup {minus}1} Hz. The effect of strain amplitude in all cases was small. For some rocks, such as the potential repository horizon of the Topopah Spring Member tuff (TSw2), the effect of strain amplitude on both attenuation and modulus was minimal.

More Details

Text for Mechanical and bulk properties in support of ESF design issues

Price, Ronald H.

An intensive laboratory investigation is being performed to determine the mechanical properties of tuffs for the Yucca Mountain Site Characterization Project (YMP). Most recently, experiments are being performed on tuff samples from a series of drill holes along the proposed alignment of the Exploratory Study Facilities (ESF) north ramp. Unconfined compression and indirect tension experiments are being performed and the results are being analyzed with the help of bulk property information. The results on samples from five of the drill holes are presented here. In general, the properties vary widely, but are highly dependent on the sample porosity.

More Details

Boundary conditions for fluid equations with flux sources and sinks

Riley, Merle E.

I use a piece-wise linear approximation to the directed flux expressions for a flowing Maxwellian fluid to write down boundary conditions for the fluid description of a multicomponent plasma. These boundary conditions are sufficiently robust to treat particle reflection, surface reactions leading to secondary production, diffusion, and field-induced drift of charged species.

More Details

Spectroscopic database for multispectral UV laser remote sensing measurements

Tisone, G.C.; Hargis Jr., P.J.; Clark, B.; Wakefield-Reyes, C.

The optimization of UV laser remote sensing systems and the interpretation of the return signals from these systems require detailed absorption and fluorescence spectra for the species of interest. Multispectral fluorescence techniques additionally require a database of dispersed UV fluorescence excitation spectra. Excitation wavelengths between 250 and 400 nm and fluorescence wavelengths in the 200 to 700 nm range are of interest.

More Details

Integrated UV fluorescence/DIAL model

Page, Karen J.

Current SNL CALIOPE modeling efforts have produced an initial model that addresses DIAL issues of wavelength, hardware design parameters, range evaluation, etc. Although this model is producing valuable results and will be used to support the planning and evaluations necessary for the first ground field experiment, it is expected to have limitations with the complex science issues that affect the CALIOPE program. In particular, the multi-dimensional effects of atmospheric turbulence, plume dynamics, speckle, etc., may be significant issues and must be evaluated in detail as the program moves to the detection of liquids and solids, longer ranges, and elevated platform environments. The goal of the integrated UV fluorescence/DIAL modeling effort is to build upon the knowledge obtained in developing and exercising the initial model to adequately support the future activities of this program. This paper will address the development of the integrated UV model, issues and limiting assumptions that may be needed in order to address the-complex phenomena involved, limits of expected performance, and the potential use of this model.

More Details

Infrared sensor for CVD deposition of dielectric films

Haaland, David M.

Infrared emission (IRE) spectra were obtained from two borophosphosilicate glass (BPSG) thin-film sample sets. The first set consisted of 21 films deposited on undoped silicon wafers, and the second set consisted of 9 films deposited on patterned and doped (product) wafers. The IRE data were empirically modeled using partial least-squares calibration to simultaneously quantify four BPSG thin-film properties. The standard errors of the determinations when modeling the 21 monitor wafers were

More Details

Low cost Image Transmission System

Skogmo, D.

Throughout the Department of Energy (DOE) complex, sites protect themselves with intrusion detection systems. Some of these systems have sensors in remote areas. These sensors frequently alarm -- not because they have detected a terrorist skulking around the area, but because they have detected a horse, or a dog, or a bush moving in the breeze. Even though the local security force is 99% sure there is no real threat, they must assess each of these nuisance or false alarms. Generally, the procedure consists of dispatching an inspector to drive to the area and make an assessment. This is expensive in terms of manpower and the assessment is not timely. Often, by the time the inspector arrives, the cause of the alarm has vanished. A television camera placed to view the area protected by the sensor could be used to help in this assessment, but this requires the installation of high-quality cable, optical fiber, or a microwave link. Further, to be of use at the present time, the site must have had the foresight to have installed these facilities in the past and have them ready for use now. What is needed is a device to place between the television camera and a modem connecting to a low-bandwidth channel such as radio or a telephone line. This paper discusses the development of such a device: an Image Transmission System, or ITS.

More Details

Chemical recognition software

Wagner, John S.

We have developed a capability to make real time concentration measurements of individual chemicals in a complex mixture using a multispectral laser remote sensing system. Our chemical recognition and analysis software consists of three parts: (1) a rigorous multivariate analysis package for quantitative concentration and uncertainty estimates, (2) a genetic optimizer which customizes and tailors the multivariate algorithm for a particular application, and (3) an intelligent neural net chemical filter which pre-selects from the chemical database to find the appropriate candidate chemicals for quantitative analyses by the multivariate algorithms, as well as providing a quick-look concentration estimate and consistency check. Detailed simulations using both laboratory fluorescence data and computer synthesized spectra indicate that our software can make accurate concentration estimates from complex multicomponent mixtures, even when the mixture is noisy and contaminated with unknowns.

More Details

An overview of the mixed waste landfill integrated demonstration

Williams, Cecelia V.

Prior to May 1992, field demonstrations of characterization technologies were performed at an uncontaminated site near the Chemical Waste Landfill. In mid-1992 through summer 1993, both non-intrusive and intrusive characterization techniques were demonstrated at the Chemical Waste Landfill. Subsurface and dry barrier demonstrations were started in summer 1993 and will continue into 1995. Future plans include demonstrations of innovative drilling, characterization and long-term monitoring, and remediation techniques. Demonstrations were also scheduled in summer 1993 at the Kirtland Air Force HSWA site and will continue in 1994. The first phase of the Thermal Enhanced Vapor Extraction System (TEVES) project occurred in April 1992 when two holes were drilled and vapor extraction wells were installed at the Chemical Waste Landfill. Obtaining the engineering design and environmental permits necessary to implement this field demonstration will take until early 1994. Field demonstration of the vapor extraction system will occur in 1994.

More Details

CALIOPE UV laser remote sensing data acquisition and control subsystem

Eyer, H.H.

This paper will discuss the UV Laser Remote Sensing Data Acquisition and Control Subsystem being developed by Sandia National Laboratories in support of the CALIOPE program. Details include the control of active system elements including the laser and beam steering mirror, passive system elements including detectors and signal processing instrumentation, and the acquisition and transfer of data for archival and evaluation by the multivariate analysis algorithm. Using the LabVIEW design philosophy developed for laboratory testing as a baseline, this evolving subsystem will initially support the UV fluorescence calibration and background data collections planned at SNL and the October 1994 Ground Field Experiment at the Nevada Test Site. The subsystem will then be upgraded to support an integrated DIAL/fluorescence capability for the April 1995 Ground Field Experiment and the October 1995 Elevated Platform Field Experiment.

More Details

Using Pro/ENGINEER`s{reg_sign} interface module

Schulze, J.

When the ACCORD Process introduced Pro/ENGINEER to Sandians several years ago, a new process for design/definition was implemented. Prior to ACCORD, engineers and draftsmen worked in the 2-D mode with a program caned ANVIL{reg_sign}, which had limited capabilities. Although the transition from 2-D modeling to 3-D modeling met with some resistance, most engineers have embraced this new concept with enthusiasm They are now able to work in the 3-D mode and at increased levels of productivity with appropriate time savings never achieved before. One area that Pro/ENGINEER is noted for that this report will concentrate on, is the powerful interface module with its wide selection of transfer file configurations. This allows the engineer to create parts or assemblies and transfer them to many different second party software packages whose vendors can provide the capability for stress analysis, rapid prototypes, virtual reality environments, or many other forms of advanced manufacturing modes of communication. The ACCORD Program has at its core, the Pro/ENGINEER program from Parametric Technology Inc. Included in the ACCORD program, are several supporting programs from other vendors to make this cooperation between software packages a reality. It is possible to create parts in Pro/ENG transfer those parts to another package that has the capability to analyze the parts for deficiencies, then optimize those parts, and allow for changes to be made. Also included in this report, are other packages closely tied to Pro/ENGINEER, but not necessarily supported under the ACCORD program. Some of these packages allow you to create very impressive video productions, or allow you to meander through a virtual reality scenario. All of these new software packages will give you a new perspective on performance. This report will show how some of these interfaces work, and how you can improve your productivity if you utilize the ACCORD program as it is implemented here at Sandia.

More Details

Preradiation studies for non-thermal Z-pinch wire load experiments on Saturn

Sanford, Thomas W.L.

The implosion dynamics of compact wire arrays on Saturn are explored as a function of wire mass m, wire length {ell}, wire radii R, and radial power-flow feed geometry using the ZORK code. Electron losses and the likelihood of arcing in the radial feed adjacent the wire load are analyzed using the TWOQUICK and CYLTRAN codes. The physical characteristics of the implosion and subsequent thermal radiation production are estimated using the LASNEX code in one dimension. These analyses show that compact tungsten wire arrays with parameters suggested by D. Mosher and with a 21-nH vacuum feed geometry satisfy the empirical scaling criterion I/(M/{ell}) {approximately} 2 MA/(mg/cm) of Mosher for optimizing non-thermal radiation from z pinches, generate low electron losses in the radial feeds, and generate electric fields at the insulator stack below the Charlie Martin flashover limit thereby permitting full power to be delivered to the load. Under such conditions, peak currents of {approximately}5 MA can be delivered to wire loads {approximately}20 ns before the driving voltage reverses at the insulator stack, potentially allowing the m = 0 instability to develop with the subsequent emission of non-thermal radiation as predicted by the Mosher model.

More Details

Resonator/oscillator response to liquid loading

Martin, Steve W.

A thickness-shear mode (TSM) resonator typically consists of a thin disk of AT-cut quartz with circular electrodes patterned on both sides. When connected to appropriate circuitry, the quartz crystal resonates at a frequency determined by the crystal thickness. Originally used to measure metal deposition in vacuum, the device has recently been used for measurements in liquid. Since the mass sensitivity of the resonator is nearly the same in liquids as in air or vacuum, the device can be used as a sensitive solution-phase microbalance. In addition, the sensitivity of the TSM resonator to contacting fluid properties enables it to function as a monitor for these properties. Under liquid loading, the change in frequency of the resonator/oscillator combination differs from the change in resonant frequency of the device. Either of these changes can be determined from an appropriate application of an equivalent-circuit model that describes the electrical characteristics of the liquid-loaded resonator.

More Details

Basic mechanisms of radiation effects in the natural space radiation environment

Schwank, James R.

Four general topics are covered in respect to the natural space radiation environment: (1) particles trapped by the earth`s magnetic field, (2) cosmic rays, (3) radiation environment inside a spacecraft, (4) laboratory radiation sources. The interaction of radiation with materials is described by ionization effects and displacement effects. Total-dose effects on MOS devices is discussed with respect to: measurement techniques, electron-hole yield, hole transport, oxide traps, interface traps, border traps, device properties, case studies and special concerns for commercial devices. Other device types considered for total-dose effects are SOI devices and nitrided oxide devices. Lastly, single event phenomena are discussed with respect to charge collection mechanisms and hard errors. (GHH)

More Details

The use of supercritical carbon dioxide for contaminant removal from solid waste

Adkins, Carol L.J.

Supercritical carbon dioxide is being explored as a waste minimization technique for separating oils, greases and solvents from solid waste. The containments are dissolved into the supercritical fluid and precipitated out upon depressurization. The carbon dioxide solvent can then be recycled for continued use. Definitions of the temperature, pressure, flowrate and potential co-solvents are required to establish the optimum conditions for hazardous contaminant removal. Excellent extractive capability for common manufacturing oils, greases, and solvents has been observed in both supercritical and liquid carbon dioxide. Solubility measurements are being used to better understand the extraction process, and to determine if the minimum solubility required by federal regulations is met.

More Details

Applications of molecular modeling to the design and characterization of materials

Carlson, G.A.

A variety of new molecular modeling tools are now available for studying molecular structures and molecular interactions, for building molecular structures from simple components using analytical data, and for studying the relationship of molecular structure to the energy of bonding and non-bonding interactions. These are proving quite valuable in characterizing molecular structures and intermolecular interactions and in designing new molecules. This paper describes the application of molecular modeling techniques to a variety of materials problems, including the probable modecular structures of coals, lignins, and hybrid inorganic-organic-organic systems (silsesquioxanes), the intercalation of small gas molecules in fullerene crystals, the diffusion of gas molecules through membranes, and the design, structure and function of biomimetic and nanocluster catalysts.

More Details

Preliminary DIAL model

Gentry, S.M.

A unique end-to-end LIDAR sensor model has been developed supporting the concept development stage of the CALIOPE UV DIAL and UV laser-induced-fluorescence (LIF) efforts. The model focuses on preserving the temporal and spectral nature of signals as they pass through the atmosphere, are collected by the optics, detected by the sensor, and processed by the sensor electronics and algorithms. This is done by developing accurate component sub-models with realistic inputs and outputs, as well as internal noise sources and operating parameters. These sub-models are then configured using data-flow diagrams to operate together to reflect the performance of the entire DIAL system. This modeling philosophy allows the developer to have a realistic indication of the nature of signals throughout the system and to design components and processing in a realistic environment. Current component models include atmospheric absorption and scattering losses, plume absorption and scattering losses, background, telescope and optical filter models, PMT (photomultiplier tube) with realistic noise sources, amplifier operation and noise, A/D converter operation, noise and distortion, pulse averaging, and DIAL computation. Preliminary results of the model will be presented indicating the expected model operation depicting the October field test at the NTS spill test facility. Indications will be given concerning near-term upgrades to the model.

More Details

The Utility-Scale Joint-Venture Program

Gallup, Donald R.

The Department of Energy`s Utility-Scale Joint-Venture (USJV) Program was developed to help industry commercialize dish/engine electric systems. Sandia National Laboratories developed this program and has placed two contracts, one with Science Applications International Corporation`s Energy Projects Division and one with the Cummins Power Generation Company. In this paper we present the designs for the two dish/Stirling systems that are being developed through the USJV Program.

More Details

MAGENCO: A map generalization controller for Arc/Info

Ganter, John H.

The Arc/Info GENERALIZE command implements the Douglas-Peucker algorithm, a well-regarded approach that preserves line ``character`` while reducing the number of points according to a tolerance parameter supplied by the user. The authors have developed an Arc Macro Language (AML) interface called MAGENCO that allows the user to browse workspaces, select a coverage, extract a sample from this coverage, then apply various tolerances to the sample. The results are shown in multiple display windows that are arranged around the original sample for quick visual comparison. The user may then return to the whole coverage and apply the chosen tolerance. They analyze the ergonomics of line simplification, explain the design (which includes an animated demonstration of the Douglas-Peucker algorithm), and discuss key points of the MAGENCO implementation.

More Details

Comparison of the KAMELEON fire model to large-scale open pool fire data

Nicolette, Vernon F.

A comparison of the KAMELEON Fire model to large-scale open pool fire experimental data is presented. The model was used to calculate large-scale JP-4 pool fires with and without wind, and with and without large objects in the fire. The effect of wind and large objects on the fire environment is clearly seen. For the pool fire calculations without any object in the fire, excellent agreement is seen in the location of the oxygen-starved region near the pool center. Calculated flame temperatures are about 200--300 K higher than measured. This results in higher heat fluxes back to the fuel pool and higher fuel evaporation rates (by a factor of 2). Fuel concentrations at lower elevations and peak soot concentrations are in good agreement with data. For pool fire calculations with objects, similar trends in the fire environment are observed. Excellent agreement is seen in the distribution of the heat flux around a cylindrical calorimeter in a rectangular pool with wind effects. The magnitude of the calculated heat flux to the object is high by a factor of 2 relative to the test data, due to the higher temperatures calculated. For the case of a large flat plate adjacent to a circular pool, excellent qualitative agreement is seen in the predicted and measured flame shapes as a function of wind.

More Details

Resonator response to Non-Newtonian fluids

Martin, Steve W.

The thickness-shear mode (TSM) resonator typically consists of a thin disk of AT-cut quartz with circular electrodes patterned on both sides. An RF voltage applied between these electrodes excites a shear mode mechanical resonance when the excitation frequency matches the crystal resonant frequency. When the TSM resonator is operated in contact with a liquid, the shear motion of the surface generates motion in the contacting liquid. The liquid velocity field, v{sub x}(y), can be determined by solving the one-dimensional Navier-Stokes equation. Newtonian fluids cause an equal increase in resonator motional resistance and reactance, R{sub 2}{sup (N)} = X{sub 2}{sup (N)}, with the response depending only on the liquid density-viscosity product ({rho}{eta}). Non-Newtonian fluids, as illustrated by the simple example of a Maxwell fluid, can cause unequal increases in motional resistance and reactance. For the Maxwell fluid, R{sub 2}{sup (M)} > X{sub 2}{sup (M)}, with relaxation time {tau} proportional to the difference between R{sub 2}{sup (M)}and X{sub 2}{sup (M)}. Early results indicate that a TSM resonator can be used to extract properties of non-Newtonian fluids.

More Details

Determination of the shear modulus in self-assembled monolayers using quartz resonators

Schneider, T.W.; Martin, S.J.; Frye, G.C.

This work examined self-assembled monolayers (SAMs) of n-alkane thiols using quartz resonators to determine the shear storage and loss moduli. Network analyzer measurements of electrical admittance at fundamental and corresponding harmonic values are fit to an equivalent circuit model. Shear modulus depends on frequency; the modulus values are three orders of magnitude lower than expected for a liquid or elastomeric polymer, more like those of a dense gas or supercritical fluid. A density of around 0.45 g/cm{sup 3} is calculated for a dodecane thiol SAM; this is roughly half of the bulk density. In conclusion, quartz resonators can be used to inertially deform SAMs.

More Details

How clean is clean: Non-destructive/direct methods of flux, residue detection

Stallard, Brian R.

The feasibility of three different non-destructive and direct methods of evaluating PCB (printed circuit boards) cleanliness was demonstrated. The detection limits associated with each method were established. In addition, the pros and cons of these methods as routine quality control inspection tools were discussed. OSEE (Optically Stimulated Electron Emission) was demonstrated to be a sensitive technique for detection of low levels of flux residues on insulating substances. However, future work including development of rugged OSEE instrumentation will determine whether the PCB industry can accept this technique in a production environment. FTIR (Fourier Transform Infrared) microscopy is a well established technique with well known characteristics. The inability of FTIR to discriminate an organic contaminant from an organic substrate limits its usefulness as a PCB line inspection tool, but it will still remain a technique for the QC/QA laboratory. One advantage of FTIR over the other two techniques described here is its ability to identify the chemical nature of the residue, which is important in Failure Mode Analysis. Optical imaging using sophisticated pattern recognition algorithms was found to be limited to high concentrations of residue. Further work on improved sensor techniques is necessary.

More Details

The effects of spatial location of defect states on the switching characteristics of amorphous and polycrystalline silicon thin film transistors: A numerical simulation using AMPS 2-D

Smith, J.; Fonash, S.; Kalkan, A.

We demonstrate a two-dimensional device simulator for MOSFET structures that incorporates models for defect distributions and show predicted effects on device switching performance for various spatial distributions of defects in amorphous and polycrystalline silicon.

More Details

Description of a high temperature quenching furnace for the study of the directional solidification of nickel-base superalloys

Schmale, David T.

A high temperature resistance furnace has been modified for the study of directional solidification of nickel-base superalloys such as alloys 718 and 625. The furnace will be used to study segregation and solidification phenomena that occur in consumable-electrode melting processes such as vacuum arc remelting and electro-slag remelting. The system consists of a water cooled high temperature furnace (maximum temperature {approximately}2900 C), roughing vacuum,system, cooling system, cooled hearth, molten metal quenching bath, and a mechanism to lower the hearth from the furnace into the molten metal bath. The lowering mechanism is actuated by a digital stopping motor with a programmable controller. The specimen (1.9 cm dia {times} 14 cm long) is melted and contained within an alumina tube (2.54 cm dia {times} 15.24 cm long) which is seated on a copper hearth cooled with {approximately}13 C water. Directional solidification can then be accomplished by decreasing the furnace temperature while holding the specimen in position, maintaining the temperature gradient in the furnace and lowering the specimen at a controlled rate or a combination of both. At any point the specimen can be lowered rapidly into the 70 C molten metal bath to quench the specimen, preserve the solidification structure, and minimize solid state diffusion, enhancing the ability to study the localized solidification conditions.

More Details

ATM-test: A workstation-based software suite for testing asynchronous transfer mode (ATM) networks

Tarman, Thomas D.

The design of a software package that provides a variety of Asynchronous Transfer Mode (ATM) test functions is presented here. These functions include cell capture, protocol decode for Transmission Control Protocol/Internet Protocol (TCP/IP) services, removal of cells (to support testing of an ATM system under cell loss conditions), and echo functions. This package is currently written to operate on the Sun Microsystems SPARCstation 10/SunOS 4.1.3 environment with a Fore Systems SBA-100 Sbus ATM adapter (140 Mbit/s TAXI interface), and the DEC 5000/240 running ULTRIX 4.2A with a Fore Systems TCA-100 TurboChannel adapter. Application scenarios and performance measurements of this software package on these host environments are presented here.

More Details

Crisis Prevention Centers as confidence building measures: Suggestions for Northeast Asia

Pregenzer, Arian L.

Relationships between countries normally war and peace. Crisis prevention activities will be particularly important in this area, and should have two goals: (1) stabilizing tense situations that could push countries toward war and (2) supporting or reenforcing efforts to move countries toward a state of peace. A Crisis Prevention Center (CPC) will facilitate efforts to achieve these goals and its functions can be grouped into three broad, inter-related categories: (1) establishing and facilitating communication among participating countries, (2) supporting negotiations and consensus-building on regional security issues, and (3) supporting implementation of agreed confidence and security building measures. Appropriate activities in each of these categories will depend on the relations among participating countries. Technology will play a critical role in a establishing communication systems to ensure the timely flow of information between countries and to provide the means for organizing and analyzing this information. Technically-based cooperative monitoring can provide an objective source of information on mutually agreed issues, thereby supporting the implementation of confidence building measures and treaties. In addition, technology itself can be a neutral subject of interaction and collaboration between technical communities from different countries. Establishing a CPC in Northeast Asia does not require the existence of an Asian security regime. Indeed, activities that occur under the auspices of a CPC, even highly formalized exchanges of agreed information, can increase transparency, and thereby pave the way for future regional cooperation. Major players in Northeast Asian security are Japan, Russia, China, North and South Korea, and the United States.

More Details

Paramagnetic point defects in amorphous thin films of SiO{sub 2} and Si{sub 3}N{sub 4}: An update

Warren, William L.

Recent research on point defects in thin films of SiO{sub 2} and Si{sub 3}SN{sub 4} on Si is presented and reviewed. In SiO{sub 2} it is now clear that no one type of E{prime} center is the sole source of radiation-induced positive charge; hydrogenous moieties or other types of E{prime} are proposed. Molecular orbital theory and easy passivation of E{prime} by H{sub 2} suggest that released H might depassivate P{sub b} sites. A charged E{prime}{sub {delta}} center has been seen in Cl-free SIMOX and thermal oxide film, and it is reassigned to an electron delocalized over four O{sub 3}{equivalent_to}Si units around a fifth Si. In Si{sub 3}N{sub 4} a new model for the amphoteric charging of Si{equivalent_to}N{sub 3} moieties is based on local shifts in defect energy with respect to the Fermi level, arising from nonuniform composition; it does not assume negative-U electron correlation. A new defect NN{sub 2}{sup 0} has been identified, with dangling orbital on a 2-coordinated N atom bonded to another N.

More Details

Parallel performance of a preconditioned CG solver for unstructured finite element applications

Shadid, John N.

A parallel unstructured finite element (FE) implementation designed for message passing machines is described. This implementation employs automated problem partitioning algorithms for load balancing unstructured grids, a distributed sparse matrix representation of the global finite element equations and a parallel conjugate gradient (CG) solver. In this paper a number of issues related to the efficient implementation of parallel unstructured mesh applications are presented. These include the differences between structured and unstructured mesh parallel applications, major communication kernels for unstructured CG solvers, automatic mesh partitioning algorithms, and the influence of mesh. partitioning metrics on parallel performance. Initial results are presented for example finite element (FE) heat transfer analysis applications on a 1024 processor nCUBE 2 hypercube. Results indicate over 95% scaled efficiencies are obtained for some large problems despite the required unstructured data communication.

More Details

Yield of the Non-Proliferation Experiment from the Leo Brady Seismic Net

Garbin, H.D.

The Leo Brady Seismic Net (LBSN) has been used to estimate seismic yields on US nuclear explosion tests for over 30 years. One of the concerns that Non-Proliferation Experiment (NPE) addresses is the yield equivalence between a large conventional explosion and a nuclear explosion. The LSBN consists of five stations that surround the Nevada Test Site (NTS). Because of our previous experience in measuring nuclear explosion yields, we operated this net to record NPE signals. Comparisons were made with 9 nuclear tests in the same volcanic tuff medium and within an 800 m range of the NPE source. The resulting seismic yield determined by each nuclear test ranged from 1.3 to 2.2 kT. Using the same techniques in determining nuclear explosion yields, the 1 kT NPE was measured at 1.7 kT nuclear equivalent yield with a standard deviation of 16%. The individual stations show a non-symmetric radiation pattern with more energy transmitted to the north and south. Comparisons with an nuclear event does not sow any obvious differences between the two tests.

More Details

Smart gun technologies: One method of eliminating unauthorized firearm use

Weiss, D.R.

Law enforcement officers work each day with individuals who can become aggressive and violent. Among the worst scenarios, which occur each year and often raise national media attention, an officer has his handgun taken away and used against him. As many as 12 officers per year are killed with their own gun. This problem can be addressed through the integration of modern sensors with control electronics to provide authorized user firearms for law enforcement and even recreational uses. A considerable benefit to law enforcement agencies, as well as society as a whole, would be gained by the application of recommended Smart Gun Technologies (SGT) as a method of limiting the use of firearms to authorized individuals. Sandia National Laboratory has been actively involved in the research and design of technologically sophisticated surety devices for weapons for the DOE and DOD. This experience is now being applied to criminal justice problems by transferring these technologies to commercial industry. In the SGT project Sandia is developing the user requirements that would limit a firearms use to its owner and/or authorized users. Various technologies that are capable of meeting the requirements are being investigated, these range from biometrics identification to radio-controlled devices. Research is presently underway to investigate which technologies represent the best solutions to the problem. Proof of concept demonstration models are being built for the most promising SGT with the intent of technology transfer. Different solutions are recommended for the possible applications: law enforcement, military, and commercial (personal protection/recreational) use.

More Details

A starting point for Risk Assessment: The Fault Mode and Effects Analysis (FMEA)

Fine, A.M.

This paper describes and discusses a basic safety analysis technique which may be useful for the beginning process of Risk Assessment and Risk Management. The technique uses judgmental factors on the part of analysts rather than dependence upon numerical techniques associated with more detailed analysis. The basic technique is presented and coupled to risk charts which may vary depending upon the intent of the analysis and the output required for the particular situation. Some variations are included to show how the technique may be used for prioritization of competing resources for necessary work.

More Details

Free-field seismic ground motion in non-proliferation experiment

Garbin, H.D.

In addition to stress and acceleration measurements made in the inelastic regime, Sandia fielded two triaxial accelerometer packages in the seismic free-field for the NON-PROLIFERATION EXPERIMENT (NPE). The gauges were located at ranges of 190 and 200 m from the center of the ANFO-laden cavity on the opposite sides of a vertical fault. This location allowed us to assess several different seismological aspects related to non-proliferation. The radial and vertical components of the two packages show similar motion. Comparisons are made with similar data from nuclear tests to estimate yield, calculate seismic energy release and to detect spectral differences between nuclear and non-nuclear explosions. The wave forms of NPE differ significantly from nuclear explosions. The first two peak amplitudes of NPE are comparable while the nuclear explosion initial peak is much larger than the second peak. The calculated seismic energies imply that the conventional explosions couple to the medium much better at low frequencies than do nuclear explosions and that nuclear explosions contain more high frequency energy than NPE. Radial and vertical accelerations were integrated for displacement and indicate there was movement across the fault.

More Details

A novel lead-free solder replacement

Vianco, Paul T.

Environmental and toxicity concerns related to the use of lead have initiated the search for acceptable, alternate joining materials for electronics assembly. This paper describes a novel lead-free solder designed as a ``drop in`` replacement for common tin/lead eutectic solder. The physical and mechanical properties of this solder are discussed in comparison to tin/lead eutectic solder. The performance of this solder when used for electronics assembly is discussed and compared to other common solders. Fatigue testing results are reported for thermal cycling electronics assemblies soldered with this lead-free composition. The paper concludes with a discussion on indium metal availability, supply and price.

More Details

Systems modeling: The first step in a process for solving the health care cost problem

Gover, J.

The core problem with the US health care system is -- it already costs to much and the rate of its cost growth is cause for further alarm. To deal with these, regulators must introduce incentives for health care providers to reduce costs and introduce incentives that make consumers of health care services concerned about the costs of the services they demand. Achievement of these regulatory goals will create opportunities for the introduction of innovations, including revolutionary new technology, that can lead to major reductions in costs. Modeling of health care system inputs, outputs, transactions, and the relationships between these parameters will expedite the development of an effective regulatory process. This model must include all of those major factors that affect the demand for health care and it must facilitate benchmarking health care subsystems against the most efficient international practices.

More Details

Microtextured resonators for measuring liquid properties

Martin, Steve W.

The response of smooth- and textured-surface thickness-shear mode (TSM) quartz resonators in liquid has been examined. Smooth devices, which viscously entrain a layer of contacting liquid, exhibit a response that depends on the product of liquid density and viscosity. Textured-surface devices, with either randomly rough or regularly patterned features, also trap liquid in surface features, exhibiting an additional response that depends on liquid density alone. Combining smooth- and textured-surface resonators in a monolithic sensor enables simultaneous extraction of liquid density and viscosity.

More Details

Quartz resonator state-of-charge monitor for lead-acid batteries

Cernosek, Richard W.

We have demonstrated that a thickness shear mode quartz resonator can be used as a real-time, in situ monitor of the state-of-charge of lead-acid batteries. The resonator is sensitive to hanges in the density and viscosity of the sulfuric acid electrolyte. Both of these liquid parameters vary monotonically with the battery state-of-charge. This new monitor is more precise than sampling hydrometers, and since it is compatible with the Corrosive electrolyte environment, it can be used for in situ monitoring. A TSM resonator consists of gold electrodes deposited on opposite surfaces of a thin AT-cut quartz crystal. When an RF voltage is applied to the electrodes, a shear strain is introduced in the piezoelectric quartz and mechanical resonance occurs between the surfaces. A liquid in contact with one of the quartz surfaces is viscously entrained, which perturbs the resonant frequency and resonance magnitude. If the surface is smooth, the changes in both frequency and magnitude are proportional to ({rho}{eta}) {sup {1/2}}, where {rho} is the liquid density and {eta} is the viscosity.

More Details

Synthetic aperture radar processing with tiered subapertures

Doerry, Armin W.

Synthetic Aperture Radar (SAR) is used to form images that are maps of radar reflectivity of some scene of interest, from range soundings taken over some spatial aperture. Additionally, the range soundings are typically synthesized from a sampled frequency aperture. Efficient processing of the collected data necessitates using efficient digital signal processing techniques such as vector multiplies and fast implementations of the Discrete Fourier Transform. Inherent in image formation algorithms that use these is a trade-off between the size of the scene that can be acceptably imaged, and the resolution with which the image can be made. These limits arise from migration errors and spatially variant phase errors, and different algorithms mitigate these to varying degrees. Two fairly successful algorithms for airborne SARs are Polar Format processing, and Overlapped Subaperture (OSA) processing. This report introduces and summarizes the analysis of generalized Tiered Subaperture (TSA) techniques that are a superset of both Polar Format processing and OSA processing. It is shown how tiers of subapertures in both azimuth and range can effectively mitigate both migration errors and spatially variant phase errors to allow virtually arbitrary scene sizes, even in a dynamic motion environment.

More Details

A model for laboratory tech transfer investment

Otey, G.R.

A simple model has been developed to address a pragmatic question: What fraction of its research and development budget should a national laboratory devote to enhancing technology in the private sector? In dealing with lab-wide budgets in an aggregate sense, the model uses three parameters - fraction of lab R&D transferable to industry, transfer efficiency and payback to laboratory missions - to partition fixed R&D resources between technology transfer and core missions. It is a steady-state model in that the transfer process is assumed to work in equilibrium with technology generation. The results presented should be of use to those engaged in managing and overseeing federal laboratory technology transfer activities.

More Details

Procedure for contact electrical resistance measurements as developed for use at Sandia National Laboratories

Finch, J.L.

Military Specifications call out general procedures and guidelines for conducting contact resistance measurements on chemical conversion coated panels. This paper deals with a test procedure developed at Sandia National Laboratories used to conduct contact electrical resistance on non-chromated conversion coated test panels. MIL-C-81706 {open_quotes}Chemical Conversion Materials For Coating Aluminum and Aluminum Alloys{close_quotes} was the reference specification used for guidance.

More Details

Analysis of the photodiode boundary layer transition indicator. LDRD final report

Kuntz, David W.

The photodiode transition indicator is a device which has been successfully used to determine the onset of boundary layer transition on numerous hypersonic flight vehicles. The exact source of the electromagnetic radiation detected by the photodiode at transition was not understood. In some cases early saturation of the device occurred, and the device failed to detect transition. Analyses have been performed to determine the source of the radiation producing the photodiode signal. The results of these analyses indicate that the most likely source of the radiation is blackbody emission from the heatshield material bordering the quartz window of the device. Good agreement between flight data and calculations based on this radiation source has been obtained. Analyses also indicate that the most probable source of the radiation causing early saturation is blackbody radiation from carbon particles which break away from the nosetip during the ablation process.

More Details

The response of aeroshells to lightning

Loescher, Douglas H.

Electrical discharges from a lightning simulator were directed at Mk12 aeroshells. Buckling of the aluminum substrate was observed after some 100-kA shots, and severe damage consisting of tearing of the aluminum and the production of inward flying aluminum shrapnel was observed after some 200-kA peak-current shots. Some shots resulted in severe damage to both the aluminum and the carbon-phenolic ablative material. It is reasonable to conclude from the experimental results that a lightning stroke with very high-peak current could, by itself, produce an opening in an Mk12 aeroshell. Because the aeroshell is part of the nuclear explosive safety exclusion region for the Mk12/W62 nuclear weapon, an opening would significantly reduce the assured safety of the weapon. It is unlikely that the observed interaction between lightning and the aeroshells would have been predicted by any form of computer simulation.

More Details

Defining a controller architecture for the Long-Reach Manipulator

Ford, W.E.

To draft a procurement specification for the Long-Reach Manipulator (LRM), the benefits and limitations of the various robotic control system architectures available need to be determined. This report identifies and describes the advantages and potential disadvantages of using an open control system versus a closed (or proprietary) system, focusing on integration of interfaces for sensors, end effectors, tooling, and operator interfaces. In addition, the various controls methodologies of several recent systems are described. Finally, the reasons behind the recommendation to procure an open control system are discussed.

More Details

Annular precision linear shaped charge flight termination system for the ODES program

Vigil, Manuel G.

The work for the development of an Annular Precision Linear Shaped Charge (APLSC) Flight Termination System (FTS) for the Operation and Deployment Experiment Simulator (ODES) program is discussed and presented in this report. The Precision Linear Shaped Charge (PLSC) concept was recently developed at Sandia. The APLSC component is designed to produce a copper jet to cut four inch diameter holes in each of two spherical tanks, one containing fuel and the other an oxidizer that are hyperbolic when mixed, to terminate the ODES vehicle flight if necessary. The FTS includes two detonators, six Mild Detonating Fuse (MDF) transfer lines, a detonator block, detonation transfer manifold, and the APLSC component. PLSCs have previously been designed in ring components where the jet penetrating axis is either directly away or toward the center of the ring assembly. Typically, these PLSC components are designed to cut metal cylinders from the outside inward or from the inside outward. The ODES program requires an annular linear shaped charge. The (Linear Shaped Charge Analysis) LESCA code was used to design this 65 grain/foot APLSC and data comparing the analytically predicted to experimental data are presented. Jet penetration data are presented to assess the maximum depth and reproducibility of the penetration. Data are presented for full scale tests, including all FTS components, and conducted with nominal 19 inch diameter, spherical tanks.

More Details

A statistical description of the types and severities of accidents involving tractor semi-trailers

Clauss, David B.

This report provides a statistical description of the types and severities of tractor semi-trailer accidents involving at least one fatality. The data were developed for use in risk assessments of hazardous materials transportation. Several accident databases were reviewed to determine their suitability to the task. The TIFA (Trucks Involved in Fatal Accidents) database created at the University of Michigan Transportation Research Institute was extensively utilized. Supplementary data on collision and fire severity, which was not available in the TIFA database, were obtained by reviewing police reports for selected TIFA accidents. The results are described in terms of frequencies of different accident types and cumulative distribution functions for the peak contact velocity, rollover skid distance, fire temperature, fire size, fire separation, and fire duration.

More Details
Results 96301–96350 of 99,299
Results 96301–96350 of 99,299