Groundwater travel time (GWTT) calculations will play an important role in addressing site-suitability criteria for the potential high-level nuclear waste repository at Yucca Mountain,Nevada. In support of these calculations, Preliminary assessments of the candidate codes and models are presented in this report. A series of benchmark studies have been designed to address important aspects of modeling flow through fractured media representative of flow at Yucca Mountain. Three codes (DUAL, FEHMN, and TOUGH 2) are compared in these benchmark studies. DUAL is a single-phase, isothermal, two-dimensional flow simulator based on the dual mixed finite element method. FEHMN is a nonisothermal, multiphase, multidimensional simulator based primarily on the finite element method. TOUGH2 is anon isothermal, multiphase, multidimensional simulator based on the integral finite difference method. Alternative conceptual models of fracture flow consisting of the equivalent continuum model (ECM) and the dual permeability (DK) model are used in the different codes.
To assess the influence of mountain-scale thermal property model variations on predicted host-rock thermal response, a series of heat conduction calculations were run using a representative two-dimensional cross section of Yucca Mountain. The effects of modeled geologic structure were evaluated through comparisons of results from a single-material, homogeneous model with those from a uniformly layered model, a discontinuous sloping-layered model, and a geo-statistical realization of thermal properties. Comparisons indicate that assumed geologic structure can result in up to a 24{degrees}C difference in predicted temperature response. Further, thermal simulations of the method used to analyze geostatistical realizations of thermal properties shows promise as an efficient means of capturing geologic structure without the complexities of intricate finite element meshing. The functional representation of two thermal property models were also investigated. The first examines the effect of using a weighting scheme to define properties for a single, homogenous material model. The second investigates the impact of thermal property temperature dependence on predicted response. As with the investigation of geologic structure, noticeable differences in predicted temperatures (up to 29{degrees}C) were found to result.
This is a second annual report since the University Center of Excellence for Photovoltaics Research and Education was established at Georgia Tech. The major focus of the center is crystalline silicon, and the mission of the Center is to improve the fundamental understanding of the science and technology of advanced photovoltaic devices and materials, to fabricate high-efficiency cells, and develop low-cost processes, to provide training and enrich the equational experience of students in this field, and to increase US competitiveness by providing guidelines to industry and DOE to achieve cost-effective and high-efficiency photovoltaic devices. This report outlines the work of the Center from July 1993--June 1994.
A five watt pseudo chip in the middle of a SEM-X circuit card was tested with various heat conduction paths in a satellite type electronic box while mounted in a vacuum chamber. Previous tests showed low temperature differentials with the use of circuit board clamps. Flight hardware with thin box walls, low mass module frames, and thin heat covers were tested to determine the temperature differential at 5.0 watts as well as at lower powers. The smallest temperature differential was 23 degrees Celsius between the 5 watt pseudo chip and the cold plate.
This report summarizes the environmental surveillance activities conducted by Sandia National Laboratories, the US Environmental Protection Agency, and Kirk-Mayer, Inc., for the Tonopah Test Range operated by Sandia National Laboratories. Sandia National Laboratories` responsibility for environmental surveillance results extends to those activities performed by Sandia National Laboratories or under its direction. Results from other environmental surveillance activities are included to provide a measure of completeness in reporting. Other environmental compliance programs such as the National Environmental Policy Act of 1969, environmental permits, and environmental restoration and waste management programs are also included in this report, prepared for the US Department of Energy (DOE) in compliance with DOE Order 5400. 1.
A popular three-dimensional mesh generation scheme is to start with a quadrilateral of the surface of a volume, and then attempt to fill the interior of volume with hexahedra, so that the hexahedra touch the surface in exactly the given quadrilaterals. Folklore has maintained that there are many quadrilateral meshes for which no such compatible hexahedral mesh exists. In this paper we give an existence proof which contradicts this folklore: A quadrilateral mesh need only satisfy some very weak conditions for there to exist a compatible hexahedral mesh. For a volume that is topologically a ball, any quadrilateral mesh composed of an even number of quadrilaterals admits a compatible hexahedral mesh. We extend this to volumes of higher genus: There is a construction to reduce to the ball case if and only if certain cycles of edges are even.
This paper describes a product realization process developed and demonstrated at Sandia by the A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) project that integrates many of the key components of ``agile manufacturing`` into a complete, design-to-production process. Evidence indicates that the process has reduced the product realization cycle and assured product quality. Products included discriminators for a robotic quick change adapter and for an electronic defense system. These discriminators, built using A-PRIMED, met random vibration requirements and had life cycles that far surpass the performance obtained from earlier efforts.
Encryption performance, in terms of bits per second encrypted, has not scaled well as network performance has increased. The authors felt that multiple encryption modules operating in parallel would be the cornerstone of scalable encryption. One major problem with parallelizing encryption is ensuring that each encryption module is getting the proper portion of the key sequence at the correct point in the encryption or decryption of the message. Many encryption schemes use linear recurring sequences, which may be generated by a linear feedback shift register. Instead of using a linear feedback shift register, the authors describe a method to generate the linear recurring sequence by using parallel decimated sequences, one per encryption module. Computing decimated sequences can be time consuming, so the authors have also described a way to compute these sequences with logic gates rather than arithmetic operations.
A-PRIMED (Agile Product Realization for Innovative Electro MEchanical Devices) demonstrated new product development in24 days accompanied by improved product quality, through ability enabling technologies. A concurrent engineering communications infrastructure was developed that provided electronic data communications, information access, enterprise integration of computers and applications, and collaborative work tools. This paper describes how A-PRIMED did it through attention to technologies, processes, and people.
Laboratory-scale heater experiments are Proposed to observe thermohydrologic Processes in tuffaceous rock using existing equipment and x-ray imaging techniques. The purpose of the experiments is to gain understanding of the near-field behavior and thermodynamic environment surrounding a heat source. As a prelude to these experiments, numerical simulations are performed to determine design-related parameters such as optimal heating power and heating duration. In addition, the simulations aid in identifying and understanding thermal processes and mechanisms that may occur under a variety of experimental conditions. Results of the simulations show that convection may play an important role in the heat transfer and thermodynamic environment of the heater if the Rayleigh-Darcy number exceeds a critical value (= 10 for the laboratory experiments) depending on the type of backfill material within the annulus (or drift).
This report contains the guidance Functional Requirements for an Integrated Intrusion Detection and Access Control Annunciator System, and survey results of selected commercial systems. The survey questions were based upon the functional requirements; therefore, the results reflect which and sometimes how the guidance recommendations were met.
A combined laboratory and field investigation was carried out to determine the extent of coring-induced damage done to samples cored from Marker Bed 139 at the WIPP site. Coring-induced damage, if present, has the potential to significantly change the properties of the material used for laboratory testing relative to the in situ material properties, resulting in misleading conclusions. In particular, connected, crack-like damage could make the permeability of cored samples orders of magnitude greater than the in situ permeabilities. Our approach compared in situ velocity and resistivity measurements with laboratory measurements of the same properties. Differences between in situ and laboratory results could be attributed to differences in the porosity due to cracks. The question of the origin of the changes could not be answered directly from the results of the measurements. Pre-existing cracks, held closed by the in situ stress, could open when the core was cut free, or new cracks could be generated by coring-induced damage. We used core from closely spaced boreholes at three orientations (0{degree}, {plus_minus}45{degrees} relative to vertical) to address the origin of cracks. The absolute orientation of pre-existing cracks would be constant, independent of the borehole orientation. In contrast, cracks induced by coring were expected to show an orientation dependent on that of the source borehole.
The Department of Energy (DOE) has shutdown many production reactors; the Department has begun a major effort to also shutdown a wide variety of other nuclear facilities. Because so many facilities are being closed, it is necessary to place many of them into a safe- storage status, i.e., deactivation, before conducting decommissioning- for perhaps as long as 20 years. The challenge is to achieve this safe-storage condition in a cost-effective manner while remaining in compliance with applicable regulations. The DOE Office of Environmental Management, Office of Transition and Management, commissioned a lessons-learned study of commercial experience with safe storage and decommissioning. Although the majority of the commercial experience has been with reactors, many of the lessons learned presented in this document can provide insight into transitioning challenges that Will be faced by the DOE weapons complex.
The solubility of Th(IV) hydrous oxide was studied in concentrated 4m and 6m NaCl solutions as well as in MgCl[sub 2] solutions ranging in concentration from 1m to 3m over a broad range of hydrogen ion concentrations. The observed solubilities in all solutions showed the same trend as observed previously of higher solubilities at early equilibration times, usually 7 to 8 days, followed by decreases in solubility with time as the precipitates aged. The trend of decreasing solubility with time was more pronounced in NaCl solutions than in MgCl[sub 2] solutions. The observed ThO[sub 2](am) solubilities in concentrated NaCl solutions (i.e., 4m and 6m) were lower than previously reported solubilities in more dilute NaCl solutions (i.e., < 3M NaCl). The results in MgCl[sub 2] were similar in all solutions regardless of the MgCl[sub 2] concentration. Current thermodynamic models for the solubility of hydrous thorium, oxide in chloride solutions, which primarily describe only aqueous Th[sup 4+]-Cl[sup -] ion-interactions, predicted higher solubilities than observed in 4 and 6m NaCl as well as in all MgCl[sub 2] solutions. An improved aqueous thermodynamic model, which includes ion-interaction parameters for like charged species, is proposed to explain these results.
In the sol-gel processing of ceramic thin films it has been frequently noted that the processing behavior, microstructure and properties of the films are dependent on the nature of the coating solution. In an attempt to understand such processing-property relationships, we have systematically investigated the effects of precursor nature on thin film densification and crystallization for ZrO2 and TiO2 thin films. Metal alkoxide starting compounds, e.g., zirconium (IV) n-butoxide n-butanol and titanium (IV) i-propoxide, were reacted with acetic acid and 2,4-pentanedione to prepare coating solutions for thin film deposition. The use of these ligands resulted in solution oligomeric species of different nature. Studies of thin film processing indicated that film processing characteristics, i.e., consolidation, densification and crystallization, were strongly dependent on solution precursor nature. Ligand steric size, pyrolysis behavior, extent of modification, and precursor reactivity were found to be key variables in controlling film processing.
This paper theoretically compares the performance of simulated annealing and evolutionary algorithms. Our main result is that under mild conditions a wide variety of evolutionary algorithms can be shown to have greater performance than simulated annealing after a sufficiently large number of function evaluations. This class of EAs includes variants of evolutionary strategie and evolutionary programming, the canonical genetic algorithm, as well as a variety of genetic algorithms that have been applied to combinatorial optimization problems. The proof of this result is based on a performance analysis of a very general class of stochastic optimization algorithms, which has implications for the performance of a variety of other optimization algorithm.
This paper describes an application where transportation logistics and simulation tools are integrated to create a modeling environment for transportation planning. The Transportation Planning Model (TPM) is a tool developed for the Department of Energy (DOE) to aid in the long-term planning of their transportation resources. The focus of the tool is to aid DOE and Sandia National Laboratory analysts in the planning of future fleet sizes, driver and support personnel sizes, base site locations, and resource balancing among the base sites. The design approach is to develop a rapid modeling environment which integrates graphical user interfaces, logistics optimizing tools, and simulation modeling. Using the TPM an analyst can easily set up a shipment scenario and perform multiple ``What If`` evaluations. The TPM has been developed on personal computers using commercial off-the-shelf software tools under the WINDOW{reg_sign} operating environment.
Field emission flat panel displays place new demands on the performance of cathodoluminescent phosphors. In particular, such phosphors must be efficient at lower voltages (ca. 100-1000 V), and must withstand higher current densities than are present on cathode ray tube screens. ZnO:Zn has been studied extensively as a low-voltage phosphor, but problems such as poor chromatic saturation and temperature sensitivity of emission remain. In this work the use of terbium-doped garnet phases such as yttrium aluminum garnet (YAG) and gadolinium gallium garnet (GGG) as low voltage green-emitting phosphors is evaluated. Hydrothermal synthesis yields well-faceted YAG grains with particle diameters of less than 1 {mu}m. Cathodoluminescent efficiency at a particular voltage was not affected by synthetic route, though the hydrothermally synthesized material was less susceptible to damage at high power densities. An efficiency of 3.5 lm/W was observed for GGG:Tb at 800 V. Deposition of the phosphors onto conducting screens increased their efficiencies at very low voltages (< 200 V). These materials may be considered alternatives to reduced zinc oxide as green-emitting phosphors.
The potential exists in a nuclear reactor core melt severe accident for molten core debris to be dispersed under high pressure into the containment building. If this occurs, the set of phenomena that result in the transfer of energy to the containment atmosphere and its surroundings is referred to as direct containment heating (DCH). Because of the potential for DCH to lead to early containment failure, the U.S. Nuclear Regulatory Commission (USNRC) has sponsored an extensive research program consisting of experimental, analytical, and risk integration components. An important element of the analytical research has been the development and assessment of direct containment heating models in the CONTAIN code. This report documents the DCH models in the CONTAIN code. DCH models in CONTAIN for representing debris transport, trapping, chemical reactions, and heat transfer from debris to the containment atmosphere and surroundings are described. The descriptions include the governing equations and input instructions in CONTAIN unique to performing DCH calculations. Modifications made to the combustion models in CONTAIN for representing the combustion of DCH-produced and pre-existing hydrogen under DCH conditions are also described. Input table options for representing the discharge of debris from the RPV and the entrainment phase of the DCH process are also described. A sample calculation is presented to demonstrate the functionality of the models. The results show that reasonable behavior is obtained when the models are used to predict the sixth Zion geometry integral effects test at 1/10th scale.
Researchers contend that composite repairs (or structural reinforcement doublers) offer numerous advantages over metallic patches including corrosion resistance, light weight, high strength, elimination of rivets, and time savings in installation. Their use in commercial aviation has been stifled by uncertainties surrounding their application, subsequent inspection and long-term endurance. The process of repairing or reinforcing airplane structures is time consuming and the design is dependent upon an accompanying stress and fatigue analysis. A repair that is too stiff may result in a loss of fatigue life, continued growth of the crack being repaired, and the initiation of a new flaw in the undesirable high stress field around the patch. Uncertainties in load spectrums used to design repairs exacerbates these problems as does the use of rivets to apply conventional doublers. Many of these repair or structural reinforcement difficulties can be addressed through the use of composite doublers. Primary among unknown entities are the effects of non-optimum installations and the certification of adequate inspection procedures. This paper presents on overview of a program intended to introduce composite doubler technology to the US commercial aircraft fleet. In this project, a specific composite application has been chosen on an L-1011 aircraft in order to focus the tasks on application and operation issues. Through the use of laboratory test structures and flight demonstrations on an in-service L-1011 airplane, this study is investigating composite doubler design, fabrication, installation, structural integrity, and non-destructive evaluation. In addition to providing an overview of the L-1011 project, this paper focuses on a series of fatigue and strength tests which have been conducted in order to study the damage tolerance of composite doublers. Test results to-date are presented.
Vinyl-bridged polysilsesquioxane gels were formed through the use of sol-gel polymerization methods. Acid- and base-catalyzed samples were prepared from both the pure cis-(l) and pure trans-(2) isomers of 1, 2-bis(triethoxysilyl)ethylene. Gelation times of the two isomers were compared. The trans monomer 2 formed gels within a week while the cis monomer I failed to gel-even after several months. Gelation of 1 could be promoted by the addition of a coordinating metal such as palladium. The resulting cis- and trans- vinyl-bridged polysilsesquioxane gels were then processed either by vacuum drying to afford xerogels or by extracting with supercritical carbon dioxide to afford aerogels. These vinylbridged polysilsesquioxanes were characterized by SEM, nitrogen sorption porosimetry, solid State {sub 29}Si and {sub 13}C NMR and x-ray powder diffraction.
This document contains six reports on actinide chemistry research supporting the Waste Isolation Pilot Plant (WIPP). These reports, completed in FY94, are relevant to the estimation of the potential dissolved actinide concentrations in WIPP brines under repository breach scenarios. Estimates of potential dissolved actinide concentrations are necessary for WIPP performance assessment calculations. The specific topics covered within this document are: the complexation of oxalate with Th(IV) and U(VI); the stability of Pu(VI) in one WIPP-specific brine environment both with and without carbonate present; the solubility of Nd(III) in a WIPP Salado brine surrogate as a function of hydrogen ion concentration; the steady-state dissolved plutonium concentrations in a synthetic WIPP Culebra brine surrogate; the development of a model for Nd(III) solubility and speciation in dilute to concentrated sodium carbonate and sodium bicarbonate solutions; and the development of a model for Np(V) solubility and speciation in dilute to concentrated sodium Perchlorate, sodium carbonate, and sodium chloride media.
Salado Mass Concrete (SMC) has been developed for use as a seal component in the Waste Isolation Pilot Plant. This concrete is intended to be mixed from pre-bagged materials, have an initial slump of 10 in., and remain pumpable and placeable for two hours after mixing. It is a mass concrete because it will be placed in monoliths large enough that the heat generated during cement hydration has the potential to cause thermal expansion and subsequent cracking, a phenomenon to avoid in the seal system. This report describes effects on concrete properties of changes in ratio of water to cement, batch size, and variations in characteristics of different lots of individual components of the concrete. The research demonstrates that the concrete can be prepared from laboratory-batched or pre-bagged dry materials in batches from 1.5 ft{sup 3} to 5.0 yd{sup 3}, with no chemical admixtures other than the sodium chloride added to improve bonding with the host rock, at a water-to-cement ratio ranging from 0.36 to 0.42. All batches prepared according to established procedures had adequate workability for at least 1.5 hours, and achieved or exceeded the target compressive strength of 4500 psi at 180 days after casting. Portland cement and fly ash from different lots or sources did not have a measurable effect on concrete properties, but variations in a shrinkage-compensating cement used as a component of the concrete did appear to affect workability. A low initial temperature and the water-reducing and set-retarding functions of the salt are critical to meeting target properties.
Thermally activated batteries use an epoxy for encapsulation of the electrical feedthroughs in the header of the battery. When the thermal battery is thermally abused, the encapsulant can pyrolyze and generate large internal pressures. This causes the battery to vent in extreme cases. The nature of these gases has never been adequately documented. Therefore, a study was undertaken to address this deficiency. The pyrolysis of various encapsulants that have been used, or are being considered for use, in thermally activated batteries was studied over a temperature range of 155 to 455 C. The composition of the pyrolysis decomposition products was determined by gas chromatography/mass spectrometry (GS/MS). This determination is helpful in assessing the potential environmental and health effect for personnel exposed to such gases. In addition, the thermal stability of the various epoxies was measured by thermogravimetric analysis (TGA).
This report presents the results of 11 rotary shear tests conducted on replicas of three hollow cylinders of natural fractures with JRC values of 7.7, 9.4 and 12.0. The JRC values were determined from the results of laser profilometer measurements. The replicas were created from gypsum cement. By varying the water-to-gypsum cement ratio from 30 to 45%, fracture replicas with different values of compressive strength (JCS) were created. The rotary shear experiments were performed under constant normal (nominal) stresses ranging between 0.2 and 1.6 MPa. In this report, the shear test results are compared with predictions using Barton`s empirical peak shear strength equation. observations during the experiments indicate that only certain parts of the fracture profiles influence fracture shear strength and dilatancy. Under relatively low applied normal stresses, the JCS does not seem to have a significant effect on shear behavior. As an alternative, a new procedure for predicting the shear behavior of fractures was developed. The approach is based on basic fracture properties such as fracture surface profile data and the compressive strength, modulus of elasticity, and Poisson`s ratio of the fracture walls. Comparison between predictions and actual shear test results shows that the alternative procedure is a reliable method.
Sandia National Laboratories has established a Cooperative Research and Development Agreement with consortium members of the National Center for Manufacturing Sciences (NCMS) to develop fundamental generic technology in printed wiring board materials and surface finishes. We are investigating the effects of surface roughness on the wettability and solderability behavior of several types of copper board finishes to gain insight into surface morphologies that lead to improved solderability. In this paper, we present optical interterometry and scanning electron microscopy results for a variety of chemically-etched copper substrates. Initial testing on six chemical etches demonstrate that surface roughness can be greatly enhanced through chemical etching. Noticeable movements in solder wettability were observed to company increases in roughness.
Recent trends towards finer pitch devices and assembly with lead free solders have resulted in increased interest in NiPd plated component leads by the electronics industry. This paper discusses the performance of NiPd fine pitch components as determined by wettability, assembly performance and solder joint reliability. Assembly evaluations were performed with a lead free solder as well as with eutectic SnPb solder. The compatibility of the NiPd component leads with different circuit board finishes (metallic and organic azole) will also be discussed.
A consortium of United States utility concerns led by the Southern California Edison Company (SCE) is conducting a cooperative project with the US Department of Energy (DOE), Sandia National Laboratories, and industry to convert the 10-MW Solar One Power Tower Pilot Plant to molten nitrate salt technology. The conversion involves installation of a new receiver, a new thermal storage system, and a new steam generator; it utilizes Solar One`s heliostat field and turbine generator. Successful operation of the converted plant, called Solar Two, will reduce economic risks in building initial commercial power tow projects and accelerate the commercial acceptance of this promising renewable energy technology. The estimated cost of Solar Two, including its three-year test period, is $48.5 million. The plant will begin operation in early 1996.
Plasma jet generators have been designed and tested which used an explosive driver and shocktube with a rectangular cross section that optimize the flow velocity and electrical conductivity. The latest in a series of designs has been tested using a reactive load to diagnose the electrical properties of the MHD generator/electromagnet combination. The results of these tests indicate that the plasma jet/MHD generator design does generate a flow velocity greater than 25 km/s and produces several gigawatts of pulsed power in a very small package size. A larger, new generator design is also presented.
A simple and intuitive formalism is presented to describe diffraction in multi-layered periodic structures. We use the well known results from scalar analysis (wave propagation in homogeneous layered media) and show that they can be generalized rather readily to vector problems such as diffraction analysis. Specifically, we derive: (1) generalized Fresnel equations appropriate for reflection and transmission from an infinitely thick grating, (2) a generalized Airy formula for thin-film to describe reflection and transmission of light through a lamellar grating and (3) a matrix propagation method akin to that used for multi-layer thin film analysis. The results developed here complement the recent work on R-matrix and S-matrix propagation algorithms that have been used in connection with modal and differential grating theories. These algorithms have proven to be numerically stable for calculating diffraction efficiencies from deep groove gratings. The formalism developed here expands upon the earlier literature by providing important details that are hitherto unavailable.
Batch-fabricated silicon seismic transducers could revolutionize the discipline of CTBT monitoring by providing inexpensive, easily depolyable sensor arrays. Although our goal is to fabricate seismic sensors that provide the same performance level as the current state-of-the-art ``macro`` systems, if necessary one could deploy a larger number of these small sensors at closer proximity to the location being monitored in order to compensate for lower performance. We have chosen a modified pendulum design and are manufacturing prototypes in two different silicon micromachining fabrication technologies. The first set of prototypes, fabricated in our advanced surface- micromachining technology, are currently being packaged for testing in servo circuits -- we anticipate that these devices, which have masses in the 1--10 {mu}g range, will resolve sub-mG signals. Concurrently, we are developing a novel ``mold`` micromachining technology that promises to make proof masses in the 1--10 mg range possible -- our calculations indicate that devices made in this new technology will resolve down to at least sub-{mu}G signals, and may even approach to 10{sup {minus}10} G/{radical}Hz acceleration levels found in the low-earth-noise model.
Fluorescent microthermal imaging (FMI) involves coating a sample surface with a thin inorganic-based film that, upon exposure to uv light, emits temperature-dependent fluorescence. FMI offers the ability to create thermal maps of integrated circuits with a thermal resolution theoretically limited to 1 m{degree}C and a spatial resolution diffraction-limited to 0.3 {mu}m. Even though FMI has been in use for more than a decade, many factors that can affect the thermal image quality have not been studied well. This paper presents recent results showing the limitations from photon shot noise and the improvement in signal-to-noise ratio from signal averaging. Three important factors in film preparation and characterization are presented that have a significant impact on thermal quality and sensitivity of FMI: uv bleaching, film dilution, and film curing. It is shown how proper film preparation and data collection method can dramatically improve the quality of FMI thermal images.
Computational simulations of the impacts of comet Shoemaker-Levy 9 (SL9) fragments on Jupiter have provided a framework for interpreting the observations. A reasonably consistent picture has emerged, along with a more detailed understanding of atmospheric collisional processes. Several aspects of Earth-impact hazards can be re-evaluated with knowledge gained from observations and from simulations of SL9. In particular, the threat of impact-generated plumes to satellites in low-Earth orbit (LEO) should be recognized. Preliminary 2-D computational simulations suggest that impacts of a size that recur about once per century generate plumes that rise to nearly 1000 kilometers over an area thousands of kilometers in diameter. Detailed modeling of such plumes should be carried out to quantify this threat to satellites in the near-Earth environment. Careful observations of high-energy atmospheric entry events should be made using both satellite and ground-based instruments to provide validation for these computational models.
This contribution describes a proposed information element that can convey authentication information within an ATM signaling message. The design of this information element provides a large amount of flexibility to the user because it does not specify a particular signature algorithm, and it does not specify which information elements must accompany the Authentication IE in a signaling message. This allows the user to implement authenticated signaling based on her site`s security policies and performance requirements.
Both n- and p-type doping have been achieved in GaN using Si{sup +} or Mg{sup +}/P{sup +} implantation, respectively, followed annealing at {ge} 1050{degrees}C. Using proximity rapid thermal annealing (10sec) the GaN surface retains both smooth morphology and its original stoichiometry. Variable temperature Hall measurements reveal approximate energy levels of 62meV for the implanted Si and 171meV for the Mg, which are similar to their values in epitaxially grown GaN. Implant isolation of both n- and p-type GaN, and n-type In{sub 0.75}Al{sub 0.25}N with multiple energy inert species (e.g. N{sup +} or F{sup +}) produces high resistivity ({ge}10{sup 8}{omega}/{open_square}) after subsequent annealing in the range 600-700{degrees}C. Smaller increases in sheet resistance are observed for In{sub x}Ga{sup 1-x}N (x=0.33-0.75) under the same conditions due to the smaller energy bandgaps and the shallower energy levels of the damage-related states controlling the resistivity.
A life prediction model is being developed by the authors for application to metal matrix composites (MMC`s). The systems under study are continuous silicon carbide fibers imbedded in titanium matrix. The model utilizes a computationally based framework based on thermodynamics and continuum mechanics, and accounts for matrix inelasticity, damage evolution, and environmental degradation due to oxidation. The computational model utilizes the finite element method, and an evolutionary analysis of a unit cell is accomplished via a time stepping algorithm. The computational scheme accounts for damage growth such as fiber-matrix debonding, surface cracking, and matrix cracking via the inclusion of cohesive zone elements in the unit cell. These elements are located based on experimental evidence also obtained by the authors. The current paper outlines the formulation utilized by the authors to solve this problem, and recent results are discussed. Specifically, results are given for a four-ply unidirectional composite subjected to cyclic fatigue loading at 650{degrees}C both in air and inert gas. The effects of oxidation on the life of the composite are predicted with the model, and the results are compared to limited experimental results.
This paper describes the use of {open_quotes}Formula 456{close_quotes} an aliphatic amine cured epoxy for impregnating coils. Methylene dianiline (MDA) has been used for more than 20 years as the curing agent for various epoxy formulations throughout the Department of Energy. Sandia National Laboratories began the process of replacing MDA with other formulations because of regulations imposed by OSHA on the use of MDA.
Optical diagnostics are extremely useful in fluid mechanics because they generally have high inherent bandwidth, and are non-intrusive. However, since optical probe measurements inherently integrate all information along the optical path, it is often difficult to isolate out-of-plane components in 3-dimensional flow events. It is also hard to make independent measurements of internal flow structure. Using an arrangement of one-dimensional wavefront sensors, we have developed a system that uses tomographic reconstruction to make two-dimensional measurements in an arbitrary flow. These measurements provide complete information in a plane normal to the flow. We have applied this system to the subsonic free jet because of the wide range of flow scales available. These measurements rely on the development of a series of one-dimensional wavefront sensors that are used to measure line-integral density variations in the flow of interest. These sensors have been constructed using linear CCD cameras and binary optics lenslet arrays. In designing these arrays, we have considered the coherent coupling between adjacent lenses and have made comparisons between theory and experimental noise measurements. The paper will present examples of the wavefront sensor development, line-integral measurements as a function of various experimental parameters, and sample tomographic reconstructions.
Adaptive finite element analysis demands a great deal of computational resources, and as such is most appropriately solved in a massively parallel computer environment. This analysis will require other parallel algorithms before it can fully utilize MP computers, one of which is parallel adaptive meshing. A version of the paving algorithm is being designed which operates in parallel but which also retains the robustness and other desirable features present in the serial algorithm. Adaptive paving in a production mode is demonstrated using a Babuska-Rheinboldt error estimator on a classic linearly elastic plate problem. The design of the parallel paving algorithm is described, and is based on the decomposition of a surface into {open_quotes}virtual{close_quotes} surfaces. The topology of the virtual surface boundaries is defined using mesh entities (mesh nodes and edges) so as to allow movement of these boundaries with smoothing and other operations. This arrangement allows the use of the standard paving algorithm on subdomain interiors, after the negotiation of the boundary mesh.
An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories are presented. Development efforts are underway for a variety of micromechanical devices and control electronics for those devices. Our efforts are concentrated in the area of surface micromachining. Pressure sensors based on silicon nitride diaphragms and hot polysilicon filaments for calorimetric gas sensing have been developed. Accelerometers based upon high-aspect ratio surface micromachining are being developed. Actuation mechanisms employing either electrostatic or steam power are being combined with a three-level active (plus an additional passive level) polysilicon surface micromachining process to couple these actuators to external devices. The results of efforts toward integration of micromechanics with the driving electronics for actuators or the amplification/signal processing electronics for sensors is also described. This effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Also, a unique micromechanics-first approach is being pursued in which the micromechanical devices are embedded below the surface of the starting material for the CMOS.
An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.
Millimeter wave resonant measurements are commonly used for surface and near-surface materials characterization including the detection of cracks and defects, analysis of semiconducting and dielectric materials, and analysis of metallic electrical properties beneath coatings. Recent work has also shown the approach to be useful in evaluating corrosion products and the detection of incipient corrosion and corrosion cracking. In the analysis area, complex permittivity data of the corrosion products can be extracted, usually with accuracy of a few percent or better, to aid in identification of the product and possibly of mechanisms. In the detection area, corrosion-related cracks of order 100{mu}m or less near the surface have been detected and corrosion products have been detected beneath a variety of paints. Surface preparation requirements are minimal, particularly compared to some optical techniques, giving increased hope of field applicability. A number of examples of NDI on aircraft related materials and structures will be presented along with an assessment of detection and accuracy limits.
A nonequilibrium continuum mixture model has been incorporated into the CTH shock physics code to describe deflagration-to-detonation transition in granular energetic materials. This approach treats multiple thermodynamic and mechanics fields including the effects of relative material motion, rate-dependent compaction and interphase exchange of mass, momentum and energy. A finite volume description is formulated and internal state variables are solved using an operator-splitting method. Numerical simulations of low-velocity impact on a weakly-confined porous propellant bed are presented which display lateral wall release leading to curved compaction and reaction wave behavior.
The purpose of this discussion is to introduce the session on the Progress on the Resolution of Severe Accident Issues. There has been much work in the area of resolution of severe accident issues over the past few years. This work has been focused on those issues most important to risk as assessed by comprehensive studies such as NUREG-1150. In particular, issues associated with early containment failure have been analyzed. These efforts to resolve issues have been hampered by the fact that {open_quotes}issue resolution{close_quotes} has not always been well defined. The term {open_quotes}issue resolution{close_quotes} conjures tip different images for the regulator, the accident analyst, the physicist, and the probabalist. In fact it is common to have as many different images of issue resolution as there are people in the room. This issue is complicated by the fact that the uncertainty in severe accident issues is enormous. (When convolved, the quantitative uncertainty in an integrated analysis due to severe accident issues can span several orders of magnitude.) In this summary, hierarchy is presented in an attempt to add some perspective to the resolution of issues in the face of large uncertainties. Recommendations are also made for analysts communicating in the area of issue resolution.
It is well-known that dry pressing of ceramic powders leads to density gradients in a ceramic compact resulting in non-uniform shrinkage during densification. This necessitates diamond grinding to final dimensions which, in addition to being an extra processing step, greatly increases the manufacturing cost of ceramic components. To develop methods to control and thus mitigate density variations in compacted powders, it has been an objective of researchers to better understand the mechanics of the compaction process and the underlying material and tooling effects on the formation of density gradients. This paper presents a review of models existing in the literature related to the compaction behavior of ceramic powders. In particular, this paper focuses on several well-known compaction models that predict pressure and density variations in powder compacts.