Publications

Results 96876–96900 of 99,299

Search results

Jump to search filters

Autocharacterization feasibility system on Hunters Trophy event

Mills, R.A.

An automated system to characterize cable systems at NTS has been developed to test the feasibility of such a system. A rack of electronic equipment including a fast pulse generator, digital sampling scope, coaxial switch matrix and GPIB controller was installed downhole at NTS for the Hunters Trophy event. It was used to test automated characterization. Recorded measurements of simulation and other instrument data were gathered to determine if a full scale automated system would be practical in full scale underground nuclear effects tests. The benefits of such a full scale system would be fewer personnel required downhole; more instrument control in the uphole recording room; faster acquisition of cable parameter data.

More Details

Simple method to estimate MOS oxide-trap, interface-trap, and border-trap densities

Fleetwood, Daniel M.

Recent work has shown that near-interfacial oxide traps that communicates with the underlaying Si (``border traps``) can play a significant role in determining MOS radiation response and long-term reliability. Thermally-stimulated-current 1/f noise, and frequency-dependent charge-pumping measurements have been used to estimate border-trap densities in MOS structures. These methods all require high-precision, low-noise measurements that are often difficult to perform and interpret. In this summary, we describe a new dual-transistor method to separate bulk-oxide-trap, interface-trap, and border-trap densities in irradiated MOS transistors that requires only standard threshold-voltage and high-frequency charge-pumping measurements.

More Details

A constitutive model for layered wire mesh and aramid cloth fabric

Neilsen, Michael K.

A new package for the air transport of hazardous materials is currently being developed in the Transportation Systems Department at Sandia National Laboratories. The baseline design has a unique impact limiter which uses layers of aluminum screen wire and aramid cloth fabric. A primary motivation for selecting this unusual combination of materials is the need for the impact limiter to not only limit the amount of load transmitted to the primary container but also remain in place during impact events so that it provides a thermal barrier during a subsequent fire. A series of uniaxial and confined compression tests indicated that the layered material does not behave like other well characterized materials. No existing constitutive models were able to satisfactorily capture the behavior of the layered material; thus, a new plasticity model was developed. The new material model was then used to characterize the response of air transport packages with layered impact limiters to hypothetical accidental impact events. Responses predicted by these analyses compared favorably with experiments at Sandia`s rocket sled test facility in which a one-fourth scale package was subjected to side and end impacts at velocities of 428 and 650 fps, respectively.

More Details

Lunar exploration rover program developments

Klarer, Paul R.

The Robotic All Terrain Lunar Exploration Rover (RATLER) design concept began at Sandia National Laboratories in late 1991 with a series of small, proof-of-principle, working scale models. The models proved the viability of the concept for high mobility through mechanical simplicity, and eventually received internal funding at Sandia National Laboratories for full scale, proof-of-concept prototype development. Whereas the proof-of-principle models demonstrated the mechanical design`s capabilities for mobility, the full scale proof-of-concept design currently under development is intended to support field operations for experiments in telerobotics, autonomous robotic operations, telerobotic field geology, and advanced man-machine interface concepts. The development program`s current status is described, including an outline of the program`s work over the past year, recent accomplishments, and plans for follow-on development work.

More Details

Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff; Data report: Yucca Mountain Site Characterization Project

Price, Ronald H.

Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a tensile fracture of welded tuff from Yucca Mountain. The objective of these tests was to examine the effect of cyclic loading on joint shear behavior under different boundary conditions. The shear tests were performed under either different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN) or constant normal stiffness ranging between 14.8 and 187.5 kips/in (25.9 and 328.1 kn/cm) . Bach test in the two categories consisted of five cycles of forward and reverse shear. Normal compression tests were also performed both before and after each shear experiment to measure changes in joint normal deformability. In order to quantify fracture surface damage during shear, fracture-surface fractal dimensions were obtained from measurements before and after shear.

More Details

Effect of boundary conditions on the strength and deformability of replicas of natural fractures in welded tuff: Comparison between predicted and observed shear behavior using a graphical method; Yucca Mountain Site Characterization Project

Price, Ronald H.

Four series of cyclic direct-shear experiments were conducted on several replicas of three natural fractures and a laboratory-developed tensile fracture of welded tuff from Yucca Mountain to test the graphical load-displacement analysis method proposed by Saeb (1989) and Amadei and Saeb (1990). Based on the results of shear tests conducted on several joint replicas under different levels of constant normal load ranging between 0.6 and 25.6 kips (2.7 and 113.9 kN), the shear behavior of joint replicas under constant normal stiffness ranging between 14.8 and 187.5 kips/in. (25.9 and 328.1 kN/cm) was predicted by using the graphical method. The predictions were compared to the results of actual shear tests conducted for the same range of constant normal stiffness. In general, a good agreement was found between the predicted and the observed shear behavior.

More Details

A lower bound for routing on a completely connected optical communication parallel computer

Goldberg, L.A.

The task of routing a 2-relation on an n-processor completely connected optical communication parallel computer (OCPC) is considered. A lower bound is presented that applies to any randomized distributed algorithm for this task: specifically, it is shown that the expected number of steps required to route a 2-relation is {Omega}({radical} log log n) in the worst case. For comparison, the best upper bound known is O(log log n).

More Details

An overview of the United States Department of Energy plant lifetime improvement program

Rosinski, S.T.

Today, 109 nuclear power plants provide over 20 percent of the electrical energy generated in the US. The operating license of the first of these plants will expire in the year 2000; one third of the operating licenses will expire by 2010 and the remaining plant licenses are scheduled to expire by 2033. The National Energy Strategy assumes that 70 percent of these plants will continue to operate beyond their current license expiration to assist in ensuring an adequate, diverse, and environmentally acceptable energy supply for economic growth. In order to preserve this energy resource in the US three major tasks must be successfully completed: (1) establishment of the regulations, technical standards, and procedures for the preparation and review of a license renewal application; (2) development, verification, and validation of the various technical criteria and bases for needed monitoring, refurbishment, or replacement of plant equipment; and (3) demonstration of the regulatory process. Since 1985, the US Department of Energy (DOE) has been working with the nuclear industry and the US Nuclear Regulatory Commission (NRC) to establish and demonstrate the option to extend the life of nuclear power plants through the renewal of operating licenses. This paper focuses primarily on DOE`s Plant Lifetime Improvement (PLIM) Program efforts to develop the technical criteria and bases for effective aging management and lifetime improvement for continued operation of nuclear power plants. This paper describes current projects to resolve generic technical issues, including degradation of long-lived components, reactor pressure vessel (RPV) embrittlement management approaches, and analytical methodologies to characterize RPV integrity.

More Details

Weapons Evaluation Test Laboratory at Pantex: Testing and data handling capabilities of Sandia National Laboratories at the Pantex Plant, Amarillo, Texas

Peters, W.R.

The Weapons Evaluation Test Laboratory (WETL), operated by Sandia Laboratories at the Pantex Plant in Amarillo, Texas, is engaged primarily in the testing of weapon systems in the stockpile or of newly produced weapon systems for the Sandia Surety Assessment Center. However, the WETL`s unique testing equipment and data-handling facilities are frequently used to serve other organizations. Service to other organizations includes performing special tests on weapon components, subassemblies, and systems for purposes such as basic development and specific problem investigation. The WETL staff also sends equipment to other laboratories for specific tests that cannot be performed at Pantex. For example, we modified and sent equipment to Brookhaven National Laboratory for testing with their Neutral Particle Beam. WETL supplied the engineering expertise to accomplish the needed modifications to the equipment and the technicians to help perform many special tests at Brookhaven. A variety of testing is possible within the WETL, including: Accelerometer, decelerometer, and G-switch g-level/closure testing; Neutron generator performance testing; weapon systems developmental tests; weapon system component testing; weapon system failure-mode-duplication tests; simultaneity measurements; environmental extreme testing; parachute deployment testing; permissive action link (PAL) testing and trajectory-sensing signal generator (TSSG) testing. WETL`s existing equipment configurations do not restrict the testing performed at the WETL. Equipment and facilities are adapted to specific requirements. The WETL`s facilities can often eliminate the need to build or acquire new test equipment, thereby saving time and expense.

More Details

Solar photovoltaics for development applications

Richards, Elizabeth H.

This document introduces photovoltaic technology to individuals and groups specializing in development activities. Examples of actual installations illustrate the many services supplied by photovoltaic systems in development applications, including water pumping, lighting, health care, refrigeration, communications, and a variety of productive uses. The various aspects of the technology are explored to help potential users evaluate whether photovoltaics can assist them in achieving their organizational goals. Basic system design, financing techniques, and the importance of infrastructure are included, along with additional sources of information and major US photovoltaic system suppliers.

More Details

Laser drilling of vertical vias in silicon

Miller, William M.

Any advance beyond the density of standard 2D Multichip Modules (MCM) will require a vertical interconnect technology that can produce reliable area array interconnection with small feature sizes. Laser drilled vertical vias have been controllably produced in standard silicon (Si) wafers down to 0.035mm (0.0014 inches) in diameter. Several laser systems and their system parameters have been explored to determine the optimum parametric set for repeatable vias in Si. The vias produced have exhibited clean smooth interior surfaces with an aspect ratio of up to 20:1 with little or no taper. All laser systems used, their system parameters, design modifications, theory of operation, and drilling results are discussed.

More Details

Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

Vittitoe, C.N.

Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

More Details

Using computerized tomography to determine ionospheric structures. Part 2, A method using curved paths to increase vertical resolution

Vittitoe, C.N.

A method is presented to unfold the two-dimensional vertical structure in electron density by using data on the total electron content for a series of paths through the ionosphere. The method uses a set of orthonormal basis functions to represent the vertical structure and takes advantage of curved paths and the eikonical equation to reduce the number of iterations required for a solution. Curved paths allow a more thorough probing of the ionosphere with a given set of transmitter and receiver positions. The approach can be directly extended to more complex geometries.

More Details

The minimum detection limits of RDX and TNT deposited on various surfaces as determined by ion mobility spectroscopy

Rodacy, Philip J.

An Ion Mobility Spectrometer (IMS) was used to determine the detection limits of RDX and TNT on six different substrates. The preparation of the explosive deposits on the surfaces is examined as well as effects due to the size, uniformity, method of application, and time that a deposit has been on a surface. Sampling methods are discussed along with effects of the surface topology. The transfer of explosives from a hand to a surface, and methods to reduce the detection limits are presented.

More Details

Error propagation equations and tables for estimating the uncertainty in high-speed wind tunnel test results

Clark, E.L.

Error propagation equations, based on the Taylor series model, are derived for the nondimensional ratios and coefficients most often encountered in high-speed wind tunnel testing. These include pressure ratio and coefficient, static force and moment coefficients, dynamic stability coefficients, calibration Mach number and Reynolds number. The error equations contain partial derivatives, denoted as sensitivity coefficients, which define the influence of free-stream Mach number, M{infinity}, on various aerodynamic ratios. To facilitate use of the error equations, sensitivity coefficients are derived and evaluated for nine fundamental aerodynamic ratios, most of which relate free-stream test conditions (pressure, temperature, density or velocity) to a reference condition. Tables of the ratios, R, absolute sensitivity coefficients, {partial_derivative}R/{partial_derivative}M{infinity}, and relative sensitivity coefficients, (M{infinity}/R) ({partial_derivative}R/{partial_derivative}M{infinity}), are provided as functions of M{infinity}.

More Details

Python fiber optic seal

Ystesund, Kenneth J.

Sandia National Laboratories has developed a high security fiber optic seal that incorporates tamper resistance features that are not available in commercial fiber optic seals. The Python Seal is a passive fiber optic loop seal designed to give indication of unauthorized entry. The seal includes a fingerprint feature that provides seal identity information in addition to the unique fiber optic pattern created when the seal is installed. The fiber optic cable used for the seal loop is produced with tamper resistant features that increase the difficulty of attacking that component of a seal. A Seal Reader has been developed that will record the seal signature and the fingerprint feature of the seal. A Correlator software program then compares seal images to establish a match or mismatch. SNL is also developing a Polaroid reader to permit hard copies of the seal patterns to be obtained directly from the seal.

More Details

The Authenticated Tracking and Monitoring System (ATMS) concept

Schoeneman, J.L.

The Authenticated Tracking and Monitoring System (ATMS) has been designed to address the need for global monitoring of the status and location of proliferation-sensitive items. Conceived to utilize the proposed Global Verification and Location System (GVLS) satellite link, ATMS could use the existing International Maritime Satellite commercial communication system until GVLS is operational. The ATMS concept uses sensor packs to monitor items and environmental conditions, collects a variety of events data through a sensor processing unit, and transmits the data to a satellite, which then sends data to ground stations. Authentication and encryption algorithms will be used to secure the data. A typical ATMS application would be to track and monitor the safety and security of a number of items in transit along a scheduled shipping route. This paper also discusses a possible proof-of-concept system demonstration.

More Details

Advanced in Macrostatistical Hydrodynamics

Mondy, Lisa A.

An overview is presented of research that focuses on slow flows of suspensions in which colloidal and inertial effects are negligibly small (Macrostatistical Hydrodynamics). First, we describe nuclear magnetic resonance imaging experiments to quantitatively measure particle migration occurring in concentrated suspensions undergoing a flow with a nonuniform shear rate. These experiments address the issue of how the flow field affects the microstructure of suspensions. In order to understand the local viscosity in a suspension with such a flow-induced, spatially varying concentration, one must know how the viscosity of a homogeneous suspension depends on such variables as solids concentration and particle orientation. We suggest the technique of falling ball viscometry, using small balls, as a method to determine the effective viscosity of a suspension without affecting the original microstructure significantly. We also describe data from experiments in which the detailed fluctuations of a falling ball`s velocity indicate the noncontinuum nature of the suspension and may lead to more insights into the effects of suspension microstructure on macroscopic properties. Finally, we briefly describe other experiments that can be performed in quiescent suspensions (in contrast to the use of conventional shear rotational viscometers) in order to learn more about the microstructure and boundary effects in concentrated suspensions.

More Details

Manufacturing technology

Leonard, J.A.; Floyd, H.L.; Goetsch, B.; Doran, L.

This bulletin depicts current research on manufacturing technology at Sandia laboratories. An automated, adaptive process removes grit overspray from jet engine turbine blades. Advanced electronic ceramics are chemically prepared from solution for use in high- voltage varistors. Selective laser sintering automates wax casting pattern fabrication. Numerical modeling improves performance of photoresist stripper (simulation on Cray supercomputer reveals path to uniform plasma). And mathematical models help make dream of low- cost ceramic composites come true.

More Details

MIMD massively parallel methods for engineering and science problems

Camp, William J.

MIMD massively parallel computers promise unique power and flexibility for engineering and scientific simulations. In this paper we review the development of a number of software methods and algorithms for scientific and engineering problems which are helping to realize that promise. We discuss new domain decomposition, load balancing, data layout and communications methods applicable to simulations in a broad range of technical field including signal processing, multi-dimensional structural and fluid mechanics, materials science, and chemical and biological systems.

More Details

Teleoperation with virtual force feedback

Anderson, Richard E.

In this paper we describe an algorithm for generating virtual forces in a bilateral teleoperator system. The virtual forces are generated from a world model and are used to provide real-time obstacle avoidance and guidance capabilities. The algorithm requires that the slaves tool and every object in the environment be decomposed into convex polyhedral Primitives. Intrusion distance and extraction vectors are then derived at every time step by applying Gilbert`s polyhedra distance algorithm, which has been adapted for the task. This information is then used to determine the compression and location of nonlinear virtual spring-dampers whose total force is summed and applied to the manipulator/teleoperator system. Experimental results validate the whole approach, showing that it is possible to compute the algorithm and generate realistic, useful psuedo forces for a bilateral teleoperator system using standard VME bus hardware.

More Details

High tar yields from low-rank coals in non-catalyzed hydropyrolysis

Klavetter, E.A.

Hydropyrolysis is potentially an attractive means for the production of synthetic fuels and chemical feedstocks from coals. It offers a simpler process configuration than traditional direct liquefaction with a higher throughput and avoids problems with liquid (tar)-solids (residue) separation. Recent evaluations of coal liquefaction processes have concluded that, provided 50% or more distillable liquids can be produced, hydropyrolysis will be a viable alternative to the traditional vehicle solvent-based processes. For low-rank coals, hydrogenation catalysts are much less effective than for their bituminous counterparts with the increases in tar yields being typically less than 10% daf coal{sup 6}. Nonetheless, without catalyst, the tar yields of 40--50% at 150 bar pressure are appreciably higher than for bituminous coals. In this investigation, tests have been conducted at temperatures up to 600{degrees}C and using an extremely low heating rate of 5{degrees}C/min on the Wyodak Argonne Premium Coal Sample (APCS) and the high-sulfur Mequinenza and Rasa lignites to ascertain whether tar yields could be further increased without catalyst. It was initially considered that the tar yields for low rank coals are limited by the fact that retrogressive reactions, particularly those involving phenolic and carboxylic moities, are more prevalent than for bituminous coals. Data obtained indicates that low heating rates do, in fact, improve the conversion for low-rank coals.

More Details
Results 96876–96900 of 99,299
Results 96876–96900 of 99,299