Publications
Search results
Jump to search filtersExact analysis of a two-dimensional model for brine flow to a borehole in a disturbed rock zone
An exact two-dimensional solution is derived for determining the fluid flow rates into a borehole and to the surface from which the borehole was drilled. The solution is for a single fluid phase in a disturbed rock zone (DRZ) that surrounds the borehole with a radius specified to be either finite or infinite. The solution is restricted to constant homogeneous rock and fluid properties in the DRZ, and pressures in the borehole and at the surface of the drift that are maintained constant at ambient conditions. A major objective of the work is to provide a benchmark for more detailed numerical calculations that include variable physical properties and an arbitrary DRZ geometry. However in addition, this work extends previous exact solutions for one-dimensional flow by: (1) allowing for a DRZ of finite but arbitrary extent, (2) accounting for depressurization due to mining the drift before drilling the borehole, and (3) accounting for two-dimensional variations of the fluid pressure caused by simultaneous fluid flow to the drift and to the borehole.
The ES&H Training Department Standards and Procedures Manual
This Manual was established in October 1992 to document the business processes used by the environment, safety, and health (ES&H) Training Department (7524) in providing services to internal Sandia National Laboratories (SNL) customers and to meet Tiger Team findings and milestones. This documentation will be revised as the department improves its processes. This manual implements the processes and procedures followed by the ES&H Training Department in support of the ES&H Training Program. The first part of the manual describes the corporate wide administrative process; the second part describes the department wide administrative process; and parts three, four, and five describe workgroup processes. Terms are defined in the Glossary at the back of the manual.
Finite element methods for non-Newtonian flows
The application of the finite element method to problems in non-Newtonian fluid mechanics is described. The formulation of the basic equations is presented for both inelastic and viscoelastic constitutive models. Solution algorithms for treating the material nonlinearities associated with inelastic fluids are described; typical solution procedures for the implicit stress-rate equations of viscoelastic fluids are also presented. Methods for the simulation of various types of free-surface flows are also outlined. Simple example analyses are included for both types of fluid models.
Automated glovebox bagout
In FY91, the Intelligent Machines Technologies Group at Sandia National Laboratories (SNL) developed a robotic prototype system that automates the removal of nuclear material from gloveboxes (called bagout) at Rocky Flats Plant (RFP). This work was funded by RFP and the Office of Security and Safeguards (OSS) at the Department of Energy (DOE) through the Facility Systems Engineering Department. With increasing concerns of dose reduction to meet ever-changing environmental, safety, and health (ES&H) standards, the need for an automated process to handle high-dose operations will increase. By removing the operators from the ``hands-on`` operation of bagout, the automated glovebox bagout (AGB) system reduces the dose. The automated platform uses a commercially available robot in combination with automated fixturing and computer control to provide a system that removes the material from the glovebox through the bag, seals the bag, and stores the bagged material into containers. Material waste is reduced by modifying the bagging process using an rf sealer instead of the conventional ``twist and tape`` method and by reducing the bag diameter used for bagout. Security and safeguards is achieved primarily by relieving the operator of handling the material. In addition, accountability for the special nuclear materials is achieved through verification of the procedure. Security measures designed against insider threat have also been developed.
A simplified model of aerosol scrubbing by a water pool overlying core debris interacting with concrete. Draft report for comment
A classic model of aerosol scrubbing from bubbles rising through water is applied to the decontamination of gases produced during core debris interactions with concrete. The model, originally developed by Fuchs, describes aerosol capture by diffusion, sedimentation, and inertial impaction. This original model for spherical bubbles is modified to account for ellipsoidal distortion of the bubbles. Eighteen uncertain variables are identified in the application of the model to the decontamination of aerosols produced during core debris interactions with concrete by a water pool of specified depth and subcooling. These uncertain variables include properties of the aerosols, the bubbles, the water and the ambient pressure. Ranges for the values of the uncertain variables are defined based on the literature and experience. Probability density functions for values of these uncertain variables are hypothesized. The model of decontamination is applied in a Monte Carlo sampling of the decontamination by pools of specified depth and subcooling. Results are analyzed using a nonparametric, order statistical analysis that allows quantitative differentiation of stochastic and phenomenological uncertainty. The sampled values of the decontamination factors are used to construct estimated probability density functions for the decontamination factor at confidence levels of 50%, 90% and 95%. The decontamination factors for pools 30, 50, 100, 200, 300, and 500 cm deep and subcooling levels of 0, 2, 5, 10, 20, 30, 50, and 70{degree}C are correlated by simple polynomial regression. These polynomial equations can be used to estimate decontamination factors at prescribed confidence levels.
UniTree, a mass storage solution at Sandia National Laboratories
Kelly, S.M.
Sandia National Laboratories has recently placed into production a mass storage system based on the UniTree{sup TM} Central File Manager software. this paper describes the current status of the system. Background information on the selection criteria is given and the hardware and software configurations are shown. The system has been in production since April, 1992 and the usage and performance statistics, as obtained thus far, are presented.
Phenomenological direct containment heating models in CONTAIN and their assessment against experimental data
In previous years, a suite of interim models had been developed for the CONTAIN code for analyzing direct containment heating (DCH) accidents. The initial development and application of these DCH models are described in a previous WRS paper. While useful, these interim models were incomplete and were highly parametric. The parametric nature of the interim CONTAIN DCH models was necessary at the time because of the lack of relevant DCH experimental data, and to facilitate sensitivity studies aimed at improving our understanding of the most important governing processes in a DCH event. However, today our understanding of DCH phenomenology is significantly improved from when the interim DCH models were developed. This understanding largely stems from recently completed NRC-sponsored DCH experiments at Sandia National Laboratories and Argonne National Laboratory. New models have been developed and added to the CONTAIN code for modeling DCH events to reflect this improvement in our understanding of DCH. The purpose of this paper is to describe the new DCH models in CONTAIN. A demonstration of the new models by comparing simplified calculations against relevant DCH test data will also be presented in this paper. This paper is an extension of the preliminary descriptions of the DCH model improvements presented in the 19th WRS paper. The new models that have been added to CONTAIN for analyzing DCH are briefly discussed below. The following paragraphs also include brief discussions of the motivation and/or basis for the developed improvement. The models are described in greater detail in the full paper.
Design and development of an IBM/VM menu system
This report describes a full screen menu system developed using IBM`s Interactive System Productivity Facility (ISPF) and the REXX programming language. The software was developed for the 2800 IBM/VM Electrical Computer Aided Design (ECAD) system. The system was developed to deliver electronic drawing definitions to a corporate drawing release system. Although this report documents the status of the menu system when it was retired, the methodologies used and the requirements defined are very applicable to replacement systems.
System model development for nuclear thermal propulsion
A critical enabling technology in the evolutionary development of nuclear thermal propulsion (NTP) is the ability to predict the system performance under a variety of operating conditions. Since October 1991, US (DOE), (DOD) and NASA have initiated critical technology development efforts for NTP systems to be used on Space Exploration Initiative (SEI) missions to the Moon and Mars. This paper presents the strategy and progress of an interagency NASA/DOE/DOD team for NTP system modeling. It is the intent of the interagency team to develop several levels of computer programs to simulate various NTP systems. An interagency team was formed for this task to use the best capabilities available and to assure appropriate peer review. The vision and strategy of the interagency team for developing NTP system models will be discussed in this paper. A review of the progress on the Level 1 interagency model is also presented.
Diagnostic behavior of the Wire Arc Plasma spray process
Laser two-focus (L2F) velocimetry has been used to measure particle velocities in the Wire Arc Plasma spray process. Particle velocities were measured for aluminum, stainless steel, and copper feedstock with wire diameters of 1.6 mm and 0.9 mm. The Wire Arc Plasma gun was operated in both a single-gas mode, using air, and in a two-gas mode, using a mixture of argon/35% hydrogen as the primary plasma gas with pure argon as the secondary gas. The results indicate that maximum particle velocities are as high as 180 m/s for aluminum sprayed using air and 130 m/s using the argon/hydrogen mixture. The results also show that arc current and wire feed rate have little effect on particle velocity; however, particle velocities increase significantly with decreasing wire diameter and with decreasing density of the feedstock material.
Verification of the computer programs SLAAP and DATA
Cawlfield, J.L.
The computer programs SLAAP and DATA are currently being used by Division 2743 for data analysis. These programs had not been previously verified to determine if they were producing correct results. The objective of the study described in this report was to verify these programs by comparing their results to those obtained with GRAFAID, a verified data analysis program. To accomplish this, five acceleration-time histories were selected. For each time history, the shock response spectrum, integral, double integral, derivative and Fourier transform were computed using SLAAP, DATA and GRAFAID. The results of each operation for each time history were overlay plotted for comparison. The results show only minor differences in some cases. These differences are deterministic and are due to differences in the algorithms or block size restrictions of the three programs.
Modeling of the vacuum plasma spray process
Experimental and analytical studies have been conducted to investigate gas, particle, and coating dynamics in the vacuum plasma spray (VPS) process for a tungsten powder. VPS coatings were examined metallographically and the results compared with the model`s predictions. The plasma was numerically modeled from the cathode tip to the spray distance in the free plume for the experimental conditions of this study. This information was then used as boundary conditions to solve the particle dynamics. The predicted temperature and velocity of the powder particles at standoff were then used as initial conditions for a coating dynamics code. The code predicts the coating morphology for the specific process parameters. The predicted characteristics exhibit good correlation with the observed coating properties.
Description and validation of ERAD: An atmospheric dispersion model for high explosive detonations
The Explosive Release Atmospheric Dispersion (ERAD) model is a three-dimensional numerical simulation of turbulent atmospheric transport and diffusion. An integral plume rise technique is used to provide a description of the physical and thermodynamic properties of the cloud of warm gases formed when the explosive detonates. Particle dispersion is treated as a stochastic process which is simulated using a discrete time Lagrangian Monte Carlo method. The stochastic process approach permits a more fundamental treatment of buoyancy effects, calm winds and spatial variations in meteorological conditions. Computational requirements of the three-dimensional simulation are substantially reduced by using a conceptualization in which each Monte Carlo particle represents a small puff that spreads according to a Gaussian law in the horizontal directions. ERAD was evaluated against dosage and deposition measurements obtained during Operation Roller Coaster. The predicted contour areas average within about 50% of the observations. The validation results confirm the model`s representation of the physical processes.
Probabilistic analysis of manipulation tasks: A research agenda
This paper addresses the problem of manipulation planning in the presence of uncertainty. We begin by reviewing the worst-case planning techniques introduced in and show that these methods are hampered by an information gap inherent to worst-case analysis techniques. As the task uncertainty increases, these methods fail to produce useful information even though a high-quality plan may exist. To fill this gap, we present the probabilistic backprojection, which describes the likelihood that a given action will achieve the task goal from a given initial state. We provide a constructive definition of the probabilistic backprojection and related probabilistic models of manipulation task mechanics, and show how these models unify and enhance several past results in manipulation planning. These models capture the fundamental nature of the task behavior, but appear to be very complex. Methods for computing these models are sketched, but efficient computational methods remain unknown.
One-class classifiers and their application to synthetic aperture radar target recognition
Target recognition requires the ability to distinguish targets from non-targets, a capability called one-class generalization. To function as a one-class classifier, a neural network must have three types of generalization: within-class, between-class, and out-of-class. We discuss these three types of generalization and identify neural network architectures that meet these requirements. We have applied our one-class classifier ideas to the problem of automatic target recognition in synthetic aperture radar. We have compared three neural network algorithms: Carpenter and Grossberg`s algorithmic version of the Adaptive Resonance Theory (ART-2A), Kohonen`s Learning Vector Quantization (LVQ), and Reilly and Cooper`s Restricted Columb Energy network (RCE). The ART 2-A neural network has given the best results, with 100% within-class, and out-of-class generalization. Experiments show that the network`s performance is sensitive to vigilance and number of training set presentations.
Analysis of parametric drift of a MESFET-based GaAs MMIC due to 125{degrees}C storage
Microwave parameters drifted significantly for two out of twenty- nine GaAs MESFET-based MMICs during ten weeks of storage at 125{degrees}C and 150{degrees}C. Analysis using measured, post- storage, FET characteristics and the microwave behavior indicates that all of the FETs in the MMICs drifted, most likely due to contamination.
Effects of anomalous salt features on caverns in Gulf Coast domes
Neal, James T.
Early solution miners encountered occasional difficulties with nonsymmetric caverns (including ``wings`` and ``chimneys``), gas releases, insoluble stringers, and excessive anhydrite ``sands.`` Apparently there was no early recognition of trends for these encounters, although certain areas were avoided after problems appeared consistently within them. Solution mining has now matured, and an accumulation of experience indicates that anomalous salt features occur on a number of Gulf Coast domes. Trends incorporating concentrations of anomalous features will be referred to as ``anomalous zones,`` or AZs (after Kupfer). The main objective of this Project is to determine the effects of AZ encounters on solution-mined caverns and related storage operations in domes. Geological features of salt domes related directly to cavern operations and AZs will be described briefly, but discussions of topics related generally to the evolution of Gulf Coast salt structures are beyond the scope of this Project.
Pressure as a probe of deep levels and defects in semiconductors: GaAs, GaP and their alloys
Measurements of the effects of pressure on the thermal electron emission rate and capture cross section for a variety of deep electronic levels in GaAs, GaP and their alloys have yielded the pressure dependences of the energies of these levels in the bandgaps, allowed evaluation of the breathing mode lattice relaxations accompanying carrier emission or capture by these levels and revealed trends which lead to new insights into the nature of the responsible defects. Emphasis is on deep levels believed to be associated with simple defects. Specifically, results will be summarized for the donor levels of the dominant native defect known as EL2 in CAM, which is believed to be associated with the arsenic antisite, and on the radiation-induced El and E2 levels in GaAs, GaP and their alloys, which are believed to be due to arsenic (or phosphorous) vacancies. The results are discussed in terms of models for the defects responsible for these deep levels.
Characterization of solidification and weldability of Fe-29Ni-17Co alloys
Applications for the controlled thermal expansion alloy Fe-29Ni-17Co often require joining by fusion welding processes. In addition, these applications usually require hermetic and high reliability joints. The small size of typical components normally dictates the use of autogenous welding processes, so that the hot cracking tendency of Fe-29Ni-17Co is of concem. The solidification behavoir and hot cracking tendency of commercial Fe-29Ni-17Co has been evaluated using diffcrential thermal analysis (DTA), Varestraint testing, light and electron microscopy, and laser welding trials. DTA and microstructural analysis indicated that the solidification of Fe-29Ni-17Co occurs as single phase austenite, does not exhibit the formation of terminal solidification phases, and results in only minimal segregation of major alloying elements. Varestraitit testing indicated that the hot cracking behavior of Fe-29Ni-17Co is similar to, though somewhat more pronounced than, 304L and 316 stainless steels. Relative to other Fe-Ni-Co and Ni-based alloys, however, the hot cracking response of this alloy is fiverable. Pulsed laser welding trials indicated that the phosphorus and sulfur levels in this heat of Fe-29Ni-17Co were insufficient to pmmote cracking in bead-on-plate welds.
Fundamentals of high energy electron beam generation
High energy electron beam accelerator technology has been developed over the past three decades in response to military and energy-related requirements for weapons simulators, directed-energy weapons, and inertially-confined fusion. These applications required high instantaneous power, large beam energy, high accelerated particle energy, and high current. These accelerators are generally referred to as ``pulsed power`` devices, and are typified by accelerating potential of millions of volts (MV), beam current in thousands of amperes (KA), pulse duration of tens to hundreds of nanoseconds, kilojoules of beam energy, and instantaneous power of gigawatts to teffawatts (10{sup 9} to 10{sup 12} watts). Much of the early development work was directed toward single pulse machines, but recent work has extended these pulsed power devices to continuously repetitive applications. These relativistic beams penetrate deeply into materials, with stopping range on the order of a centimeter. Such high instantaneous power deposited in depth offers possibilities for new material fabrication and processing capabilities that can only now be explored. Fundamental techniques of pulse compression, high voltage requirements, beam generation and transport under space-charge-dominated conditions will be discussed in this paper.
The Remote Security Station (RSS) final report
Pletta, J.B.
The Remote Security Station (RSS) was developed by Sandia National Laboratories for the Defense Nuclear Agency to investigate issues pertaining to robotics and sensor fusion in physical security systems. This final report documents the status of the RSS program at its completion in April 1992. The RSS system consists of the Man Portable Security Station (MaPSS) and the Telemanaged Mobile Security Station (TMSS), which are integrated by the Operator`s Control Unit (OCU) into a flexible exterior perimeter security system. The RSS system uses optical, infrared, microwave, and acoustic intrusion detection sensors in conjunction with sensor fusion techniques to increase the probability of detection and to decrease the nuisance alarm rate of the system. Major improvements to the system developed during the final year are an autonomous patrol capability, which allows TMSS to execute security patrols with limited operator interaction, and a neural network approach to sensor fusion, which significantly improves the system`s ability to filter out nuisance alarms due to adverse weather conditions.
In situ permeable flow sensors at the Savannah River Integrated Demonstration: Phase 1 results
The In Situ Permeable Flow Sensor, a new technology which uses a thermal perturbation technique to directly measure the 3-dimensional groundwater flow velocity vector at a point in permeable, unconsolidated geologic formations, has been used to monitor changes in the groundwater flow regime around an experimental air stripping waste remediation activity. While design flaws in the first version of the technology, which were used during the experiment being reported here, precluded measurements of the horizontal component of the flow velocity, measurements of the vertical component of the flow velocity were obtained. Results indicate that significant changes in the vertical flow velocity were induced by the air injection system. One flow sensor, MHM6, measured a vertical flow velocity of 4 m/yr or less when the air injection system was not operating and 25 m/yr when the air injection system was on. This may be caused by air bubbles moving past the probes or may be the result of the establishment of a more widespread flow regime in the groundwater induced by the air injection system. In the latter case, significantly more groundwater would be remediated by the air stripping operation since groundwater would be circulated through the zone of influence of the air injection system. Newly designed flow sensors, already in the ground at Savannah River to monitor Phase II of the project, are capable of measuring horizontal as well as vertical components of flow velocity.
Durability of carbon-plastic electrodes for zinc/bromine storage batteries
Arnold Jr., C.
In previous work, failure of early versions of the zinc/bromine battery was traced to degradation and warpage of the carbon-plastic electrode. These electrodes were fabricated from copolymers of ethylene and propylene (EP) containing structures that were found to be susceptible to degradation by the electrolyte. In this work, we evaluated two developmental electrodes from Johnson Controls Battery Group, Inc., in which the EP copolymer was replaced with a high-density polyethylene (HDPE) that contained glass-fiber reinforcing fillers. The glass fiber content of these two electrodes was different (19% vs. 31%). We determined the effect of electrolyte on sorption behavior, dimensional stability, chemical stability, and thermal, mechanical, and electrical properties under real-time and accelerated aging conditions. We also characterized unaged samples of both electrodes to determine their chemical composition and physical structure. We found that high glass content in the electrode minimizes sorption and increases dimensional stability. Both high and low glass content electrodes were found to be chemically and thermally stable toward the electrolyte. A slight decrease in the storage modulus (G{prime}) of both electrodes was attributed to sorption of non-ionic and hydrophobic ingredients in the electrolyte. The electrical conductivity of both electrodes appeared to improve (increase) upon exposure to the electrolyte. No time or temperature trends were observed for the chemical, thermal, or mechanical properties of electrodes made from HDPE. Since decreases in these properties were noted for electrodes made from EP copolymers under similar conditions, it appears that the HDPE-based electrodes have superior long-term stability in the ZnBr{sub 2} environment.
Hydrostatic and triaxial compression experiments on unpoled PZT 95/5-2Nb ceramic: The effects of shear stress on the F{sub R1} {yields} A{sub O} polymorphic phase transformation
Hydrostatic and constant-stress-difference (CSD) experiments were conducted at RT on 3 different sintering runs of unpoled, Nb-doped lead-zirconate-titanate ceramic (PZT 95/5-2Nb) in order to quantify influence of shear stress on displacive, martensitic-like, first-order, rhombohedral {r_arrow} orthorhombic phase transformation. In hydrostatic compression at RT, the transformation began at about 260 MPa, and was usually incompletely reversed upon return to ambient. Strains associated with the transformation were isotropic, both on first and subsequent hydrostatic cycles. Results for CSD tests were quite different. First, the confining pressure and mean stress at which the transition begins decreased linearly with increasing stress difference. Second, the rate of transformation decreased with increasing shear stress and the accompanying purely elastic shear strain. This contrasts with the typical observation that shear stresses increase reaction and transformation kinetics. Third, strain was not isotropic during the transformation: axial strains were greater and lateral strains smaller than for the hydrostatic case, though volumetric strain behavior was comparable for the two types of tests. However, this effect does not appear to be an example of true transformational plasticity: no additional unexpected strains accumulated during subsequent cycles through transition under nonhydrostatic loading. If subsequent hydrostatic cycles were performed on samples previously run under CSD conditions, strain anisotropy was again observed, indicating that the earlier superimposed shear stress produced a permanent mechanical anisotropy in the material. The mechanical anisotropy probably results from a ``one-time`` crystallographic preferred orientation that developed during the transformation under shear stress. Finally, in a few specimens from one particular sintering run, sporadic evidence for a ``shape memory effect`` was observed.
The use of sequential indicator simulation to characterize geostatistical uncertainty; Yucca Mountain Site Characterization Project
Hansen, K.M.
Sequential indicator simulation (SIS) is a geostatistical technique designed to aid in the characterization of uncertainty about the structure or behavior of natural systems. This report discusses a simulation experiment designed to study the quality of uncertainty bounds generated using SIS. The results indicate that, while SIS may produce reasonable uncertainty bounds in many situations, factors like the number and location of available sample data, the quality of variogram models produced by the user, and the characteristics of the geologic region to be modeled, can all have substantial effects on the accuracy and precision of estimated confidence limits. It is recommended that users of SIS conduct validation studies for the technique on their particular regions of interest before accepting the output uncertainty bounds.
A fast portable implementation of the Secure Hash Algorithm, III
Mccurley, Kevin S.
In 1992, NIST announced a proposed standard for a collision-free hash function. The algorithm for producing the hash value is known as the Secure Hash Algorithm (SHA), and the standard using the algorithm in known as the Secure Hash Standard (SHS). Later, an announcement was made that a scientist at NSA had discovered a weakness in the original algorithm. A revision to this standard was then announced as FIPS 180-1, and includes a slight change to the algorithm that eliminates the weakness. This new algorithm is called SHA-1. In this report we describe a portable and efficient implementation of SHA-1 in the C language. Performance information is given, as well as tips for porting the code to other architectures. We conclude with some observations on the efficiency of the algorithm, and a discussion of how the efficiency of SHA might be improved.
Test facilities for evaluating nuclear thermal propulsion systems
Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized.
UNICOS{reg_sign} security system
Vandevender, W.H.
Developing security plans and supporting security tests is a very important part of the Department of Energy accreditation process. This paper will discuss the general testing methodology that was used to achieve DOE accreditation of the Secure UNICOS environment at Sandia National Laboratories, Albuquerque. In addition, some specific security testing procedures, test and problem areas will be described.
Thermo-visco-inelasticity in large deformations
Herrmann, W.
A formulation is given of constitutive equations valid for large deformations for materials with elastic range and internal state variables intended to describe the internal structure of the material. A material description is used to construct a purely mechanical theory which largely follows that of Carroll. The assumption that the work done in finite closed cycles of homogeneous deformation is non-negative leads to an elastic potential and a dissipation inequality which, in turn, implies a normality condition, by an argument adapted from that of Lin and Naghdi. When the theory is generalized to include temperature dependence, the Clausius-Duhem inequality leads by well-known arguments to an elastic potential and nonnegative dissipation. Rate effects are included by assuming that the inelastic strain rate is a function of the dynamic overstress, but the results of the work assumption or the thermodynamic argument are unchanged. Some remarks regarding implications for stability are made.
Handling effluent from nuclear thermal propulsion system ground tests
A variety of approaches for handling effluent from nuclear thermal propulsion system ground tests in an environmentally acceptable manner are discussed. The functional requirements of effluent treatment are defined and concept options are presented within the framework of these requirements. System concepts differ primarily in the choice of fission-product retention and waste handling concepts. The concept options considered range from closed cycle (venting the exhaust to a closed volume or recirculating the hydrogen in a closed loop) to open cycle (real time processing and venting of the effluent). This paper reviews the different methods to handle effluent from nuclear thermal propulsion system ground tests.
Analysis and measurement of thermal resistance in a 3-dimensional silicon multichip module populated with assembly test chips
Three dimensional multichip modules (MCMS) present an unusual challenge to the thermal designer. For example, high thermal resistance between upper planes of the MCM and the thermally anchored bottom plane can lead to the development of excessive temperatures. As new designs emerge, it becomes desirable to have methods of experimentally determining interior temperatures in the module in order to validate complex finite element calculations. In order to develop methods for assessing the thermal performance of a 3D MCM, we have developed a test module with three planes or slices. In this paper, we report on some initial calculations and measurements for the 3D MCM. In addition, we discuss the improvement in thermal performance obtained by replacing the top slice with a diamond substrate. Finite element method (FEM) thermal calculations have been done with both the workstation based analyzer P/Thermal from PDA Engineering and the PC program, Inertia from Modern Computer Aided Engineering. These analyses have assumed no heat losses by radiation or convection.
Loaded cavity-backed slot (LCBS) antennas for Reentry Vehicles
This report describes the linearly-polarized, loaded cavity-backed slot (LCBS) antenna developed for Reentry Vehicles (RVs) and the development process used by the Antenna Development Department. It includes typical antenna engineering design considerations or requirements, fabrication/assembly process, and performance characteristics. Antenna design theory is reduced to the basic concepts useful in designing LCBS antennas for reentry vehicles.
Video animation system operators manual
This document describes the components necessary to put together a video animation system. It is primarily intended for use at Sandia National Laboratories as it describes the components used in systems at Sandia. The main document covers the operation of the equipment in some detail and is intended for either the system maintainer or an advanced user. There is an appendix for each of the three systems in use by the Engineering Sciences Directorate which contain instructions for the general user.
Whipple bumper shield results and CTH simulations at velocities in excess of 10 km/s
A series of experiments has been performed on the Sandia HyperVelocity Launcher (HVL) to evaluate the effectiveness of a Whipple bumper shield to orbital space debris at impact velocities in excess of 10 km/s. Upon impact by a 0.67 g (0.87 mm thick) flier plate, the thin aluminum bumper shield disintegrates into a debris cloud. The debris cloud front propagates axially at velocities of {approximately}14 km/s and expands radially at a velocity of {approximately}7 km/s. Subsequent loading on a 3.2 mm thick aluminum substructure by the debris penetrates the substructure completely. However, when the mass of the flier plate is reduced to 0.33 g, the substructure, although damaged, is not perforated over the duration of the experiment. Numerical simulations performed using the multi-dimensional hydrodynamics code CTH also predict complete penetration of the substructure by the subsequent debris cloud for a 0.87 g flier plate. The numerical simulations for a 0.33 g flier plate show a strong dependence on assumed impact geometry. For the assumption of a spherical projectile impact geometry, perforation of the substructure by the subsequent debris cloud is not predicted by CTH.
Shock characterization of Diallyl Phthalate (DAP)
This study involved the shock characterization of Diallyl Phthalate (DAP), in particular, the equation of state as measured by the shock Hugoniot. Tests were done between 1 and 11 GPa impact shock pressure. The Hugoniot parameters were determined to be: {rho}{sub 0}= 1.743, C{sub 0} = 2.20, and S = 2.33.
Risk evaluation for a B&W Pressurized Water Reactor, effects of fire protection system actuation on safety-related equipment. Evaluation of Generic Issue 57
Nuclear power plants have experienced inadvertent actuations of fire protection systems (FPS) under conditions for which these systems were not intended to actuate. They have also experienced advertent actuations with the presence of a fire. These actuations have often damaged plant equipment. This document provides a review of the impact of past occurrences of both types of such events on nuclear power plant safety. Thirteen different scenarios leading to actuation of fire protection systems due to a variety of causes were identified. These scenarios ranged from inadvertent actuation caused by human error to hardware failure and includes seismic root causes and seismic/fire interaction. A quantification of these thirteen scenarios, where applicable, was performed on a Babcock and Wilcox Pressurized Water Reactor (lowered loop design). This report estimates the contribution of FPS actuations to core damage frequency and to risk.
An improved spectral graph partitioning algorithm for mapping parallel computations
Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. We present a new domain mapping algorithm that extends recent work in which ideas from spectral graph theory have been applied to this problem. Our generalization of spectral graph bisection involves a novel use of multiple eigenvectors to allow for division of a computation into four or eight parts at each stage of a recursive decomposition. The resulting method is suitable for scientific computations like irregular finite elements or differences performed on hypercube or mesh architecture machines. Experimental results confirm that the new method provides better decompositions arrived at more economically and robustly than with previous spectral methods. We have also improved upon the known spectral lower bound for graph bisection.
Revised nomenclature for defects at or near the Si/SiO{sub 2} interface
A revised nomenclature for defects in MOS devices is described which clearly distinguishes the language used to describe the physical location of defects from that used to describe their electrical response. ``Oxide traps`` are simply defects in the SiO{sub 2} layer, and ``interface traps`` are defects at the Si/SiO{sub 2} interface; nothing is presumed about how either communicates with the underlying Si. ``Fixed states`` are defined electrically as trap levels that do not communicate with the Si on the time scale, but ``switching states`` can exchange charge with the Si. Fixed states presumably are oxide traps, but switching states can either be interface traps or near-interfacial oxide traps that can communicate with the Si, i.e. ``border traps.`` Thus the term ``traps`` is reserved for defect location, and the term ``states`` for electrical response. This defect picture is used to provide new insight into the response of MOS capacitors with 45-nm radiation-hardened oxides to electrical stress and annealing; capacitance-voltage and thermally-stimulated-current measurements are used. 2 figs, 14 refs. (DLC)
The formal use of expert judgments in environmental management
The solution of ER/WM problems will rely on the use of expert judgments. These judgments should be able to withstand the same rigorous scrutiny as the decisions made to solve these problems. Therefore, those judgments that are likely to have a significant impact on the solution of ER/WM problems should be elicited and used in a formal manner. In this paper, we discuss the key areas of environmental management where expert judgments are expected to be crucial, as well as the process to formalize them. This process is a generic one and should only be construed as a roadmap; specific aspects of the process need to be tailored to address the problem at hand. By employing this process, the quality of the judgments is enhanced, and therefore, the likelihood that the solution of ER/WM problems will be a sound and defensible one is considerably increased.
Discrepancies between charge-pumping, dual-transistor, and midgap measurements of D{sub it}
Several different techniques are used to electrically characterize defects at or near the Si/SiO{sub 2} interface. Three common methods are the charge-pumping, midgap, and dual-transistor techniques. Each of these techniques offer advantages and disadvantages compared to the others. For instance, charge-pumping measurements are not significantly affected by charge lateral non-uniformities and can provide high-sensitivity measurements of the average density of interface traps. However, charge-pumping measurements cannot provide accurate measurements of the number of charged oxide traps. In contrast both the dual-tranistor and midgap techniques can provide good estimates for threshold-voltage shifts due to oxide traps and interface traps, but these estimates can break down when significant charge lateral non-uniformities are present in the oxide. Considering the widespread use of these, techniques, it is of practical and theoretical importance to quantitatively compare them. At the SISC, we will present a detailed comparison of the charge-pumping, midgap, and dual-tranistor techniques. Values for the density of interface traps measured using the three techniques will be compared for n- and P-channel transistors fabricated using several different process technologies, and under different process technologies, and under different irradiation and anneal conditions. Discrepancies between the different techniques are observed. Causes for the discrepancies will be explored at the SISC.
Decision making, risk assessment, and uncertainty analysis in environmental management
Environmental management involves making decisions that will lead to the solution of environmental restoration and waste management (ER/WM) problems. Not only are ER/WM problems technologically challenging, but they must be dealt with under politically and emotionally charged conditions. Furthermore, these decisions must be made based on less than certain information. Therefore, environmental managers must consider the sources of uncertainty that will impact the results of the decision-making process, treat them in an explicit manner, and assess their impact on the decision. Consequently, the process must be a defensible, objective, and transparent one; otherwise the foundation for solving ER/WM problems will not be sufficiently solid to survive the criticisms that such solutions are likely to be subjected to. The use of risk assessment and decision analysis tools helps the environmental manager achieve this goal. It is also important that these decisions consider the array of risk-related issues associated with ER/WM problems, which include the risk to the health and safety of the public as well as other risks such as economic risk. The solution of ER/WM problems must obtain and maintain a proper balance between all these issues. It is also crucial that the multiple stakeholders having an interest in the solution of ER/WM problems be involved in the decision-making process.
Core-concrete interactions using molten urania with zirconium on a limestone concrete basemat
Copus, E.R.
An inductively heated experiment SURC-1, using UO[sub 2]-ZrO[sub 2] material, was executed to measure and assess the thermal, gas, and aerosol source terms produced during core debris/concrete interactions. The SURC-1 experiment eroded a total of 27 cm of limestone concrete during 130 minutes of sustained interaction using 204.2 kg of molten prototypic UO[sub 2]-ZrO[sub 2] core debris material that included 18 kg of zr metal and 3.4 kg of fission product simulants. The melt pool temperature ranged from 2100 to 2400[degrees]C during the first 50 minutes of the test, followed by steady temperatures of 2000 to 2100[degrees]C during the middle portion of the test and temperatures of 1800 to 2000[degrees]C during the final 50 minutes of testing. The total erosion during the first 50 minutes was 16 cm with an additional 2 cm during the middle part of the test and 9 cm of ablation during the final 50 minutes. Aerosols were continuously released in concentrations ranging from 30 to 200 g/m[sup 3]. Comprehensive gas flow rates, gas compositions, and aerosol compositions were also measured during the SURC-1 test.
Market hub technology in the domestic natural gas distribution system. A panel discussion
This document describes a panel discussion held on March 18, 1992 as part of a conference entitled ``Market Hub Technology`` . The purpose of the conference was to stimulate dialogue among various segments of the natural gas industry on the technology limits of an economic policy issue that has the potential to significantly alter the structure and functioning of the natural gas industry. Attendees included key US gas industry representatives, Federal Energy Regulatory Commission (FERC) commissioners, and others. The conference explored the concept of market centers, or hubs, and related technologies. It covered the technology currently available for the establishment of an integrated system of physical market hubs, and explored technology requirements for the further development of useful and efficient hubs. The discussion identified two primary barriers to the acceptance and implementation of a market center distribution system for natural gas. The first barrier is the potential change in the configuration of the market such a system would introduce and the resistance various industry segments would mount to such change. The second is the lack of industry standardization in the physical and business infrastructures.
PVUSA EMT-1 ENTECH photovoltaic concentrator module test report
A single EMCH concentrator module for the Photovoltaics for Utility Scale Application (PVUSA), Emerging Technologies-1 (EMT-1) program has been electrically and environmentally tested to the requirements in Sandia`s SAND86-2743 document ``Qualification Tests for Photovoltaic Concentrator Cell Assemblies; and Modules.`` Module testing was divided into three parts: (1) initial characterization, (2) environmental testing, and (3) supplemental testing. Testing began with module inspection for damage, adequate name plate information, grounding off-axis beam damage, and baseline electrical performance. The included thermal cycling, humidity/freeze cycling, rainwater intrusion, and hail impact, and hi-pot testing. After both thermal cycling and environmental testing, the module was electrically tested. The supplemental testing not required by the Sandia qualification document was conducted for engineering evaluation. These tests included wet insulation resistance measurements and cell temperature measurements after installation of heat sink fin extensions. The test sequence revealed some module deficiencies which include RTV adhesive/sealant problems, high cell temperatures, off-track beam damage, and low wet insulation resistance values.
Latent image exposure monitor using scatterometry
We discuss the use of light scattered from a latent image to control photoresist exposure dose and focus conditions which results in improved control of the critical dimension (CD) of the developed photoresist. A laser at a non-exposing wavelength is used to illuminate a latent image grating. The light diffracted from the grating is directly related to the exposure dose and focus and thus to the resultant CD in the developed resist. Modeling has been done using rigorous coupled wave analysis to predict the diffraction from a latent image as a function of the substrate optical properties and the photoactive compound (PAC) concentration distribution inside the photoresist. It is possible to use the model to solve the inverse problem: given the diffraction, to predict the parameters of the latent image and hence the developed pattern. This latent image monitor can be implemented in a stepper to monitor exposure in situ, or prior to development to predict the developed CD of a wafer for early detection of bad devices. Experimentation has been conducted using various photoresists and substrates with excellent agreement between theoretical and experimental results. The technique has been used to characterize a test pattern with a focused spot as small as 36{mu}m in diameter. Using diffracted light from a simulated closed-loop control of exposure dose, CD control was improved by as much as 4 times for substrates with variations in underlying film thickness, compared to using fixed exposure time. The latent image monitor has also been applied to wafers with rough metal substrates and focus optimization.
Energy and Environment, August 1992. A Sandia Technology Bulletin
A brief overview of selected programs at Sandia is presented. This issue contains high-lights on the following: Reducing risk in nuclear reactors; energy and environment news in brief; eliminating bottlenecks in plastics recycling; new technologies remedy old waste problems; new technologies remedy old waste problems; safe disposal of military components; and heat pipes for stirling engine testing.
The estimation of electrical cable fire-induced damage limits
Sandia National Laboratories has, for several years, been engaged in the performance of both fire safety and electrical equipment qualification research under independent programs sponsored by the US Nuclear Regulatory Commission. Recent comparisons between electrical cable thermal damageability data gathered independently in these two efforts indicate that a direct correlation exists between certain of the recent cable thermal vulnerability information gathered under equipment qualification conditions and thermal damageability in a fire environment. This direct correlation allows for a significant expansion of the data base on estimated cable thermal vulnerability limits in a fire environment because of the wide range of cable types and products that have been evaluated as a part of the equipment qualification research. This paper provides a discussion of the basis for the derived correlation, and presents estimated cable thermal damage limits for a wide range of generic cable types and specific cable products. The supposition that a direct correlation exists is supported through direct comparisons of the test results for certain specific cable products. The proposed supplemental cable fire vulnerability data gained from examination of the equipment qualification results is presented. These results should be of particular interest to those engaged in the evaluation of fire risk for industrial facilities, including nuclear power plants.
Optimization of expressions involving array classes
C++ is rapidly gaining in popularity as a scientific programming language. The data encapsulation inherent in the class concept and the availability of operator overloading for compact representation of operations make it an ideal language for translating concepts in mathematical physics into computer code. Furthermore, its strong type checking and memory management features facilitate correct coding of algorithms. Unfortunately, C++ code which is written in the true spirit of the language is often very inefficient under current compiler implementations. Many of the inefficiency issues, such as unnecessary copy operations or proliferation of temporaries, have been well-characterized. Some may be alleviated by clever C++ coding, but others cannot be alleviated except by writing C-like code that sacrifices one or more of the best features of the language. This document describes a major source of efficiency problems in expressions using overloaded operators on array classes, and proposes certain minor modifications to the C++ language standard which will facilitate optimization of these expressions.
SAFSIM input manual: A computer program for the engineering simulation of flow systems
SAFSIM (System Analysis Flow SIMulator) is a FORTRAN computer program to simulate the integrated performance of systems involving fluid mechanics, heat transfer, and reactor dynamics. SAFSIM provides sufficient versatility to allow the engineering simulation of almost any system, from a backyard sprinkler system to a clustered nuclear reactor propulsion system. In addition to versatility, speed and robustness are primary goals of SAFSIM. SAFSIM contains three basic physics modules: (1) a one-dimensional finite element fluid mechanics module with multiple flow network capability; (2) a one-dimensional finite element structure heat transfer module with multiple convection and radiation exchange surface capability; and (3) a point reactor dynamics module with reactivity feedback and decay heat capability. SAFSIM can be used for gas (compressible) or liquid (incompressible) single-phase flow systems with primary emphasis on gases (or supercritical fluids). This document contains a description of all the information required to create an input file for SAFSIM execution.