Publications

Results 93851–93875 of 99,299

Search results

Jump to search filters

Development program to certify composite doubler repair technique for commercial aircraft

Roach, Dennis P.

Commercial airframes exceeding 20 service years often develop crack and corrosion flaws. Bonded composite doublers offer a cost effective method to safely extend aircraft lives. The Federal Aircraft Authority (FAA) has completed a project to introduce composite doubler repair technology to the commercial aircraft industry. Instead of riveting steel or aluminum plates for repair, a single composite doubler may be bonded to the damaged structure. Adhesive bonding eliminates stress concentrations caused by fastener holes. Composites are readily formed into complex shapes for repairing irregular components. Also, composite doublers can be tailored to meet specific anisotropy needs, eliminating structural stiffening in directions other than those required. Other advantages include corrosion resistance, a high strength-to-weight ratio, and potential time savings in installation. One phase of this study developed general methodologies and test programs to ensure proper performance of the technique. A second phase focused on reinforcement of an L-1011 door frame, and encompassed all lifetime tasks such as design, analysis, installation, and nondestructive inspection. This paper overviews the project and details the activities conducted to gain FAA approval for composite doubler use. Structural tests evaluated the damage tolerance and fatigue performance of composite doublers while finite element models were generated to study doubler design issues. Nondestructive inspection procedures were developed and validated using full-scale test articles. Installation dry-runs demonstrated the viability of applying composite doublers in hangar environments. The project`s documentation package was used to support installation of a Boron-Epoxy composite repair on a Delta Air Lines L-1011 aircraft. A second product of the results is a Lockheed Service Bulletin which allows the door corner composite doubler to be installed on all L-1011 aircraft. 9 refs., 10 figs., 2 tabs.

More Details

Validation and transfer of NDI techniques for corrosion quantification and small crack/disbond detection

Shurtleff, W.W.

A coordinated program in inspection system research was started at the Federal Aviation Administration (FAA) Technical Center in 1990 as part the National Aging Aircraft Research Program. The primary objectives of the Inspection Systems Research Initiative are to act in concert with other government agencies and private industry to develop improved inspection techniques to address specific airframe and engine inspection problems and to evaluate and validate existing and emerging inspection systems. Advanced conventional technologies, emerging technologies, or combinations of technologies are investigated for their ability to accurately and reliably detect cracks, disbonds, corrosion, and other damage. This paper will present an overview of the FAA inspection system research initiative with special focus on the successes through validation and technology transfer.

More Details

High reliability plastic packaging for microelectronics

Sweet, James N.

Goal was Assembly Test Chips (ATCs) which could be used for evaluating plastic encapsulation technologies. Circuits were demonstrated for measuring Au-Al wirebond and Al metal corrosion failure rates during accelerated temperature and humidity testing. The test circuits on the ATC02.5 chip were very sensitive to extrinsic or processing induced failure rates. Accelerated aging experiments were conducted with unpassivated triple track Al structures on the ATC02.6 chip; the unpassivated tracks were found to be very sensitive to particulate contamination. Some modifications to existing circuitry were suggested. The piezoresistive stress sensing circuitry designed for the ATC04 test chip was found suitable for determining the change in the state of mechanical stress at the die when both initial and final measurements were made near room temperature (RT). Attempt to measure thermal stress between RT and a typical polymer glass transition temperature failed because of excessive die resistor- substrate leakage currents at the high temperature end; suitable circuitry changes were developed to overcome this problem. One temperature and humidity experiment was conducted with Sandia developed static radom access memory parts to examine non-corrosion CMOS failures; this objective was not achieved, but corrosion failure at the metal to Si contacts on the die surface could be detected. This 2-year effort resulted in new designs for test circuits which could be used on an advanced ATC for reliability assessment in Defense Programs electronics development projects.

More Details

Conceptual design for an electron-beam heated hypersonic wind tunnel

Lipinski, Ronald

There is a need for hypersonic wind-tunnel testing at about mach 10 and above using natural air and simulating temperatures and pressures which are prototypic of flight at 50 km altitude or below. With traditional wind-tunnel techniques, gas cooling during expansion results in exit temperatures which are too low. Miles, et al., have proposed overcoming this difficulty by heating the air with a laser beam as it expands in the wind-tunnel nozzle. This report discusses an alternative option of using a high-power electron beam to heat the air as it expands. In the e-beam heating concept, the electron beam is injected into the wind-tunnel nozzle near the exit and then is guided upstream toward the nozzle throat by a strong axial magnetic field. The beam deposits most of its power in the dense air near the throat where the expansion rate is greatest. A conceptual design is presented for a large-scale system which achieves Mach 14 for 0.1 seconds with an exit diameter of 2.8 meters. It requires 450 MW of electron beam power (5 MeV at 90 A). The guiding field is 500 G for most of the transport length and increases to 100 kG near the throat to converge the beam to a 1.0-cm diameter. The beam generator is a DC accelerator using a Marx bank (of capacitors) and a diode stack with a hot cathode. 14 refs. 38 figs., 9 tabs.

More Details

The role of R and D in geothermal drilling cost reduction

Glowka, D.A.

The role that drilling technology development can play in reducing the cost of geothermal power is examined. Factors contributing to the relatively high cost of geothermal drilling are discussed, and potential technology improvements that could reduce those costs are identified. Projects under way at Sandia National Laboratories to address these technology needs are summarized, and estimates are made of the potential drilling cost savings resulting from these projects.

More Details

Food and Drug Administration process validation activities to support 99Mo production at Sandia National Laboratories

Mcdonald, M.J.

Prior to 1989 {sup 99}Mo was produced in the US by a single supplier, Cintichem Inc., Tuxedo, NY. Because of problems associated with operating its facility, in 1989 Cintichem elected to decommission the facility rather than incur the costs for repair. The demise of the {sup 99}Mo capability at Cintichem left the US totally reliant upon a single foreign source, Nordion International, located in Ottawa Canada. In 1992 the DOE purchased the Cintichem {sup 99}Mo Production Process and Drug Master File (DMF). In 1994 the DOE funded Sandia National Laboratories (SNL) to produce {sup 99}Mo. Although Cintichem produced {sup 99}Mo and {sup 99m}Tc generators for many years, there was no requirement for process validation which is now required by the Food and Drug Administration (FDA). In addition to the validation requirement, the requirements for current Good manufacturing Practices were codified into law. The purpose of this paper is to describe the process validation being conducted at SNL for the qualification of SNL as a supplier of {sup 99}Mo to US pharmaceutical companies.

More Details

Development of modifications to the material point method for the simulation of thin membranes, compressible fluids, and their interactions

York II, A.R.

The material point method (MPM) is an evolution of the particle in cell method where Lagrangian particles or material points are used to discretize the volume of a material. The particles carry properties such as mass, velocity, stress, and strain and move through a Eulerian or spatial mesh. The momentum equation is solved on the Eulerian mesh. Modifications to the material point method are developed that allow the simulation of thin membranes, compressible fluids, and their dynamic interactions. A single layer of material points through the thickness is used to represent a membrane. The constitutive equation for the membrane is applied in the local coordinate system of each material point. Validation problems are presented and numerical convergence is demonstrated. Fluid simulation is achieved by implementing a constitutive equation for a compressible, viscous, Newtonian fluid and by solution of the energy equation. The fluid formulation is validated by simulating a traveling shock wave in a compressible fluid. Interactions of the fluid and membrane are handled naturally with the method. The fluid and membrane communicate through the Eulerian grid on which forces are calculated due to the fluid and membrane stress states. Validation problems include simulating a projectile impacting an inflated airbag. In some impact simulations with the MPM, bodies may tend to stick together when separating. Several algorithms are proposed and tested that allow bodies to separate from each other after impact. In addition, several methods are investigated to determine the local coordinate system of a membrane material point without relying upon connectivity data.

More Details

Constitutive behavior of 40Sn-40In-20Pb and 50In-50Pb solders

Frear, D.R.

This work was performed to characterize the time dependent deformation behavior of two solder alloys typically used in radar applications, 40Sn-40In-20Pb and 50In-50Pb by weight percent. The near-eutectic 60Sn-40Pb alloy was sued as a baseline comparison. The time-dependent deformation was measured using isothermal uniaxial compression creep tests. The data was reduced and, using a least squares fit algorithm, formatted into the Sherby-Dorn power law creep equation. The derived constitutive relationships were then used as a primary input to a solid mechanics, finite element model to predict solder joint lifetime and reliability. For a fixed applied stress, 40Sn-40In-20Pb had slower creep rates, at all temperatures, compared to 50In-50Pb and the baseline near eutectic 60Sn-40Pb solder. At temperatures above 70 C, the 50In-50Pb had faster creep rates than 60 Sn-40Pb. At lower temperatures, the 60Sn-40Pb solder had a higher creep rate due, in part, to its heterogeneous structure and large number of grain boundaries available for grain boundary sliding and rotation compared to 50In-50Pb.

More Details

The Fireball integrated code package

Dobranich, Dean

Many deep-space satellites contain a plutonium heat source. An explosion, during launch, of a rocket carrying such a satellite offers the potential for the release of some of the plutonium. The fireball following such an explosion exposes any released plutonium to a high-temperature chemically-reactive environment. Vaporization, condensation, and agglomeration processes can alter the distribution of plutonium-bearing particles. The Fireball code package simulates the integrated response of the physical and chemical processes occurring in a fireball and the effect these processes have on the plutonium-bearing particle distribution. This integrated treatment of multiple phenomena represents a significant improvement in the state of the art for fireball simulations. Preliminary simulations of launch-second scenarios indicate: (1) most plutonium vaporization occurs within the first second of the fireball; (2) large non-aerosol-sized particles contribute very little to plutonium vapor production; (3) vaporization and both homogeneous and heterogeneous condensation occur simultaneously; (4) homogeneous condensation transports plutonium down to the smallest-particle sizes; (5) heterogeneous condensation precludes homogeneous condensation if sufficient condensation sites are available; and (6) agglomeration produces larger-sized particles but slows rapidly as the fireball grows.

More Details

LDRD final report: Physical simulation of nonisothermal multiphase multicomponent flow in porous media

Martinez, Mario J.

This document reports on the accomplishments of a laboratory-directed research and development (LDRD) project whose objective was to initiate a research program for developing a fundamental understanding of multiphase multicomponent subsurface transport in heterogeneous porous media and to develop parallel processing computational tools for numerical simulation of such problems. The main achievement of this project was the successful development of a general-purpose, unstructured grid, multiphase thermal simulator for subsurface transport in heterogeneous porous media implemented for use on massively parallel (MP) computers via message-passing and domain decomposition techniques. The numerical platform provides an excellent base for new and continuing project development in areas of current interest to SNL and the DOE complex including, subsurface nuclear waste disposal and cleanup, groundwater availability and contamination studies, fuel-spill transport for accident analysis, and DNAPL transport and remediation.

More Details

Interactions between self-assembled monolayers and an organophosphonate: A detailed study using surface acoustic wave-based mass analysis, polarization modulation-FTIR spectroscopy, and ellipsometry

Ricco, Antonio J.

Self-assembled monolayers (SAMs) having surfaces terminated in the following functional groups: -CH{sub 3}, -OH, -COOH, and (COO{sup -}){sub 2}Cu{sup 2+} (MUA-Cu{sup 2+}) have been prepared and examined as potential chemically sensitive interfaces. Mass measurements made using surface acoustic wave (SAW) devices indicate that these surfaces display different degrees of selectivity and sensitivity to a range of analytes. The response of the MUA-Cu{sup 2+} SAM to the nerve-agent simulant diisopropyl methylphosphonate (DIMP) is particularly intriguing. Exposure of this surface to 50%-of-saturation DIMP yields a surface concentration equivalent to about 20 DIMP monolayers. Such a high surface concentration in equilibrium with a much lower-than-saturation vapor pressure has not previously been observed. Newly developed analytical tools have made it possible to measure the infrared spectrum of the chemically receptive surface during analyte dosing. Coupled with in-situ SAW/ellipsometry measurements, which permit simultaneous measurement of mass and thickness with nanogram and Angstrom resolution, respectively, it has been possibly to develop a model for the surface chemistry leading to the unusual behavior of this system. The results indicate that DIMP interacts strongly with surface-confined Cu{sup 2+} adduct that nucleates growth of semi-ordered crystallites having substantially lower vapor pressure than the liquid.

More Details

Development and assessment of the CONTAIN hybrid flow solver

Murata, Kenneth K.

A new gravitational head formulation for the treatment of stratified flows has been developed for CONTAIN, a lumped-parameter code used primarily for the analysis of postulated accidents in nuclear power plants. This new hybrid formulation is discussed and compared in this paper with the old, average-density CONTAIN formulation. In addition, these formulations are assessed against experimental data from three large-scale experiments in which stratified conditions were observed. These are the NUPEC M-8-1, Surtsey ST-3, and the HDR E11.2 experiments.

More Details

Generation of multi-million element meshes for solid model-based geometries: The Dicer algorithm

Tautges, Timothy J.

The Dicer algorithm generates a fine mesh by refining each element in a coarse all-hexahedral mesh generated by any existing all-hexahedral mesh generation algorithm. The fine mesh is geometry-conforming. Using existing all-hexahedral meshing algorithms to define the initial coarse mesh simplifies the overall meshing process and allows dicing to take advantage of improvements in other meshing algorithms immediately. The Dicer algorithm will be used to generate large meshes in support of the ASCI program. The authors also plan to use dicing as the basis for parallel mesh generation. Dicing strikes a careful balance between the interactive mesh generation and multi-million element mesh generation processes for complex 3D geometries, providing an efficient means for producing meshes of varying refinement once the coarse mesh is obtained.

More Details

Feature recognition applications in mesh generation

Tautges, Timothy J.

The use of feature recognition as part of an overall decomposition-based hexahedral meshing approach is described in this paper. The meshing approach consists of feature recognition, using a c-loop or hybrid c-loop method, and the use of cutting surfaces to decompose the solid model. These steps are part of an iterative process, which proceeds either until no more features can be recognized or until the model has been completely decomposed into meshable sub-volumes. This method can greatly reduce the time required to generate an all-hexahedral mesh, either through the use of more efficient meshing algorithms on more of the geometry or by reducing the amount of manual decomposition required to mesh a volume.

More Details

Regulatory and extra-regulatory testing to demonstrate radioactive material packaging safety

Ammerman, Douglas

Packages for the transportation of radioactive material must meet performance criteria to assure safety and environmental protection. The stringency of the performance criteria is based on the degree of hazard of the material being transported. Type B packages are used for transporting large quantities of radioisotopes (in terms of A{sub 2} quantities). These packages have the most stringent performance criteria. Material with less than an A{sub 2} quantity are transported in Type A packages. These packages have less stringent performance criteria. Transportation of LSA and SCO materials must be in {open_quotes}strong-tight{close_quotes} packages. The performance requirements for the latter packages are even less stringent. All of these package types provide a high level of safety for the material being transported. In this paper, regulatory tests that are used to demonstrate this safety will be described. The responses of various packages to these tests will be shown. In addition, the response of packages to extra-regulatory tests will be discussed. The results of these tests will be used to demonstrate the high level of safety provided to workers, the public, and the environment by packages used for the transportation of radioactive material.

More Details

How to manage without being a manager

Sweeney, Mary A.

In the author`s current position at Sandia National Laboratories within the Pulsed Power Sciences Center, much of the author`s time is spent in composing short (one page) technical reports and long (> 20 page) technical contracts and program plans for transmission to the Department of Energy and to upper management and also in reviewing long technical documents for accuracy. A major requirement of these efforts is to complete them on a timely basis, often within a few hours or a few days. In this talk, the author reveals some communication {open_quotes}secrets{close_quotes} that have been learned. The idea behind these twelve {open_quotes}secrets{close_quotes} is to get the answers you, as a nonmanager, need quickly from a manager without creating stress either on your part or the manager`s part.

More Details

Examples of technical innovations in rock property measurements prompted by the Waste Isolation Pilot Plant

Christian-Frear, T.L.

The Waste Isolation Pilot Plant (WIPP) is the U.S. Department of Energy`s (DOE) planned repository for transuranic waste generated by defense programs. The WIPP repository 660 meters underground in bedded salt. Bedded salt was chosen for the repository because of salt`s small moisture content, extremely low permeability, and its natural ability to flow or creep, effectively encapsulating the waste in the long-term. However, because of these unique characteristics, the ability to measure properties at in situ conditions are beyond the realm of most standard experimental equipment. Thus a suite of new experimental systems and techniques has been developed to measure properties in extremely {open_quotes}tight{close_quotes} (low permeability) rocks. Also, innovations in rock property measurements have been made for standard porous media through the research conducted to characterize the rocks above the repository. A number of the new systems and techniques developed through the WIPP are presented in this paper. Examples include permeameters, two-phase flow characterization equipment, techniques for evaluation of salt healing, and characterization of diffusive processes.

More Details

Results of the joint ESARDA/INMM workshop on science and modern technology for safeguards

Dupree, S.A.

The Joint ESARDA/INMM Workshop on Science and Modem Technology for Safeguards was held in Arona, Italy, October 28-31, 1996. It was attended by some 120 participants, consisting principally of scientists from various disciplines and safeguards experts from the inspectorates. The Workshop provided a full discussion on the near and far term scientific technologies that may be applied to safeguards. In addition, there were extended discussions on the social and political aspects surrounding the areas of Nonproliferation, International Safeguards, and Regional Safeguards. The general opinion was that the Workshop met and exceeded its goals, setting the stage for future workshops of this type. One of the outstanding characteristics of this Workshop was the ample amount of time allowed for full discussion of each presentation, both for technical issues and social/political issues. This procedure was substantially different from the usual ESARDA and INMM meetings. This paper will discuss the organization and conduct of the Workshop, as well as the results as reported by the four Working Group Chairs and the Workshop Co-chairs.

More Details

Diamond switches for high temperature electronics

Loubriel, Guillermo M.

This paper presents the results of switching voltages of 500 V and currents of 10 A using chemical vapor deposited (CVD) diamond as a switching material. The switching is performed by using an electron beam that penetrates the diamond, creates electron hole pairs, and lowers its resistivity to about 20 {Omega}-cm and its resistance to about 4 {Omega}. Tests were performed at room temperature but in a configuration that allows for 250 C.

More Details

Optimizing surface acoustic wave sensors for trace chemical detection

Frye, G.C.; Kottenstette, R.J.; Heller, E.J.

This paper describes several recent advances for fabricating coated surface acoustic wave (SAW) sensors for applications requiring trace chemical detection. Specifically, we have demonstrated that high surface area microporous oxides can provide 100-fold improvements in SAW sensor responses compared with more typical polymeric coatings. In addition, we fabricated GaAs SAW devices with frequencies up to 500 MHz to provide greater sensitivity and an ideal substrate for integration with high-frequency electronics.

More Details

Modern control strategies for vacuum arc remelting of segregation sensitive alloys

Williamson, Rodney L.

There are several process variables which are crucial to the control of vacuum arc remelting of segregation sensitive alloys. These are: electrode gap, melt rate, cooling rate, furnace annulus, furnace atmosphere and electrode quality (i.e. cleanliness and integrity). Of these variables, active, closed loop control is usually applied only to electrode gap. Other variables are controlled by controlling furnace operational parameters to preset schedules (e.g. melting current is ramped or held constant to control melt rate in an open loop fashion), through proper maintenance and calibration of equipment (e.g. to ensure proper cooling water and gas flow rates, or to accomplish an acceptable vacuum leak rate), through proper practice of procedures, and by maintaining electrode quality control. Electrode gap control is accomplished by controlling an electrode gap indicator such as drip-short frequency (or period) to a specified set-point. This type of control, though often adequate, ignores information available from other electrode gap indicators and is susceptible to upsets. A multiple input electrode gap controller is described which uses optimal estimation techniques to address this problem.

More Details

Characterization of electrothermal actuators and arrays fabricated in a four-level, planarized surface-micromachined polycrystalline silicon process

Barron, C.C.

This paper presents the results of tests performed on a variety of electrothermal microactuators and arrays of these actuators recently fabricated in the four-level planarized polycrystalline silicon (polysilicon) SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and will apply to similar actuators made in other polysilicon MEMS processes. The measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different design criteria. A typical application in a stepper motor is shown to illustrate the utility of these actuators and arrays.

More Details

Shock wave structure in heterogeneous reactive media

Baer, M.R.

Continuum mixture theory and mesoscale modeling are applied to describe the behavior of shock-loaded heterogeneous media. One-dimensional simulations of gas-gun experiments demonstrate that the wave features are well described by mixture theory, including reflected wave behavior and conditions where significant reaction is initiated. Detailed wave fields are resolved in numerical simulations of impact on a lattice of discrete explosive {open_quotes}crystals{close_quotes}. It is shown that rapid distortion first occurs at material contact points; the nature of the dispersive fields includes large amplitude fluctuations of stress over several particle pathlengths. Localization of energy causes {open_quotes}hot-spots{close_quotes} due to shock focusing and plastic work as material flows into interstitial regions.

More Details

Cost and performance analysis of physical security systems

Hicks, M.J.; Yates, D.; Jago, W.H.

CPA - Cost and Performance Analysis - is a prototype integration of existing PC-based cost and performance analysis tools: ACEIT (Automated Cost Estimating Integrated Tools) and ASSESS (Analytic System and Software for Evaluating Safeguards and Security). ACE is an existing DOD PC-based tool that supports cost analysis over the full life cycle of a system; that is, the cost to procure, operate, maintain and retire the system and all of its components. ASSESS is an existing DOE PC-based tool for analysis of performance of physical protection systems. Through CPA, the cost and performance data are collected into Excel workbooks, making the data readily available to analysts and decision makers in both tabular and graphical formats and at both the system and subsystem levels. The structure of the cost spreadsheets incorporates an activity-based approach to cost estimation. Activity-based costing (ABC) is an accounting philosophy used by industry to trace direct and indirect costs to the products or services of a business unit. By tracing costs through security sensors and procedures and then mapping the contributions of the various sensors and procedures to system effectiveness, the CPA architecture can provide security managers with information critical for both operational and strategic decisions. The architecture, features and applications of the CPA prototype are presented. 5 refs., 3 figs.

More Details

Development of a remote vital signs sensor

Ladd, Mark D.

This paper describes the work at Sandia National Laboratories to develop sensors that remotely detect unique life-form characteristics, such as breathing patterns or heartbeat patterns. This paper will address the Technical Support Working Group`s (TSWG) objective: to develop a remote vital signs detector which can be used to assess someone`s malevolent intent. The basic concept of operations for the projects, system development issues, and the preliminary results for a radar device currently in-house and the implications for implementation are described. A survey that identified the in-house technology currently being evaluated is reviewed, as well as ideas for other potential technologies to explore. A radar unit for breathing and heartbeat detection is being tested, and the applicability of infrared technology is being explored. The desire for rapid prototyping is driving the need for off-the-shelf technology. As a conclusion, current status and future directions of the effort are reviewed.

More Details
Results 93851–93875 of 99,299
Results 93851–93875 of 99,299