Publications

Results 93326–93350 of 99,299

Search results

Jump to search filters

SPICE Level 3 and BSIM3v3.1 characterization of monolithic integrated CMOS-MEMS devices

Proceedings of SPIE - The International Society for Optical Engineering

Staple, Bevan D.

The monolithic integration of MicroElectroMechanical Systems (MEMS) with the driving, controlling, and signal processing electronics promises to improve the performance of micromechanical devices as well as lower their manufacturing, packaging, and instrumentation costs. Key to this integration is the proper interleaving, combining, and customizing of the manufacturing processes to produce functional integrated micromechanical devices with electronics. We have developed a MEMS-first monolothic integrated process that first seals the micromechanical devices in a planarized trench and then builds the electronics in a conventional CMOS process. To date, most of the research published on this technology has focused on the performance characteristics of the mechanical portion of the devices, with little information on the attributes of the accompanying electronics. This work attempts to reduce this information void by presenting the results of SPICE Level 3 and BSIM3v3.1 model parameters extracted for the CMOS portion of the MEMS-first process. Transistor-level simulations of MOSFET current, capacitance, output resistance, and transconductance versus voltage using the extracted model parameters closely match the measured data. Moreover, in model validation efforts, circuit-level simulation values for the average gate propagation delay in a 101-stage ring oscillator are within 13-18% of the measured data. These results establish the following: (1) the MEMS-first approach produces functional CMOS devices integrated on a single chip with MEMS devices and (2) the devices manufactured in the approach have excellent transistor characteristics. Thus, the MEMS-first approach renders a solid technology foundation for customers designing in the technology.

More Details

Development of security engineering curricula at US universities

Proceedings International Carnahan Conference on Security Technology

Garcia, M.L.

The Southwest Surety Institute was formed in June, 1996 by Arizona State University (ASU), New Mexico Institute of Mining and Technology (NM Tech), New Mexico State University (NMSU), and Sandia National Laboratories (SNL) to provide new educational programs in Security Engineering. This is the first science-based program of its kind in the United States, directed at educating Security Engineers to help government and industry address their security needs. Current courses include security system design, evaluation, principles, and technology, the criminal justice system, and each member brings a unique educational capability to the institute. NMSU provides a security technology minor, merging programs in Criminal Justice and Electronics Technology. NM Tech has a formidable explosives testing and evaluation facility. ASU is developing a masters program in Security Engineering at their School of Technology located on a new campus in Mesa, Arizona. The Sandia National Laboratories security system design and evaluation process forms the basis for the security engineering curricula. In an effort to leverage the special capabilities of each university, distance education will be used to share courses among institute members and eventually with other sites across the country. The Institute will also pursue research and development funding in the areas of physical security information security, computer modeling and analysis, and counter-terrorist technology. Individual Institute members are currently working with sponsors from government and industry in areas such as counter-terrorism, microelectronics, banking, aviation, and sensor development.

More Details

Cost and performance analysis of physical protection systems-a case study

Proceedings - International Carnahan Conference on Security Technology

Hicks, M.J.; Snell, M.S.; Sandoval, J.S.; Potter, C.S.

Design and analysis of physical protection systems requires (1) identification of mission critical assets, (2) identification of potential threats that might undermine mission capability; (3) identification of the consequences of loss of mission-critical assets (e.g., time and cost to recover required capability and impact on operational readiness), and (4) analysis of the effectiveness of physical protection elements. CPA (cost and performance analysis) addresses the fourth of these four issues. CPA is a methodology that joins activity based cost estimation with performance-based analysis of physical protection systems. CPA offers system managers an approach that supports both tactical decision making and strategic planning. Current exploratory applications of the CPA methodology address analysis of alternative conceptual designs. Hypothetical data is used to illustrate this process.

More Details

Development of a trace explosives detection portal for personnel screening

Proceedings - International Carnahan Conference on Security Technology

Parmeter, John

We discuss the development, design and operation of a walk-through trace detection portal designed to screen personnel for explosives. Developed at Sandia National Laboratories (SNL) with primary funding from the Federal Aviation Administration (FAA) and additional support from the Department of Energy Office of Safeguards and Security, this portal is intended primarily for use in airport terminals and in other localities where a very high throughput of pedestrian traffic is combined with stringent security requirements. The portal is capable of detecting both vapor and particulate contamination, with the collection of explosive material being based upon the entrainment of that material in air flows over the body of the person being screened. This portal is capable of detecting high explosives of interest to the FAA. We discuss the results of field testing of the portal in the Albuquerque International Airport in September, 1997 and more recent steps towards commercialization of the portal.

More Details

GAS TRANSPORT BY THERMAL TRANSPIRATION IN MICRO-CHANNELS - A NUMERICAL STUDY

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Wong, C.C.; Hudson, M.L.; Potter, D.L.; Bartel, T.J.

A reliable micro gas pump is an essential element to the development of many micro-systems for chemical gas analyses. At Sandia, we are exploring a different pumping mechanism, gas transport by thermal transpiration. Thermal transpiration refers to the rarefied gas dynamics developed in a micro-channel with a longitudinal temperature gradient. To investigate the potential of thermal transpiration for gas pumping in micro-systems, we have performed simulations and model analysis to design micro-devices and to assess their design performance before the fabrication process. Our effort is to apply ICARUS (a Direct Simulation Monte Carlo code developed at Sandia) to characterize the fluid transport and evaluate the design performance. The design being considered has two plenums at different temperatures (hot and cold) separated by a micro-channel of 0.1 micron wide and 1 micron long. The temperature difference between the two plenums is 30 Kelvin. ICARUS results, a quasi-steady analysis, predicts a net flow through the micro-channel with a velocity magnitude of about 0.4 m/s due to temperature gradient at the wall (thermal creep flow) at the early time. Later as the pressure builds up in the hot plenum, flow is reversed. Eventually when the system reaches steady state equilibrium, the net flow becomes zero. The thermal creep effect is compensated by the thermo-molecular pressure effect. This result demonstrates that it is important to include the thermo-molecular pressure effect when designing a pumping mechanism based on thermal transpiration. The DSMC technique can model this complex thermal transpiration problem.

More Details

A BI-AXIAL ACTIVE BORING TOOL FOR CHATTER MITIGATION

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Redmond, James M.

This paper summarizes results of metal cutting tests using an actively damped boring bar to suppress regenerative chatter. PZT stack actuators were integrated into a commercially available two-inch diameter boring bar to suppress bending vibrations. Since the modified tool requires no specialized mounting hardware, it can be readily mounted on a variety of machines. A cutting test using the prototype bar to remove metal from a hardened steel workpiece verifies that the actively damped tool yields significant vibration reduction and improved surface finish as compared to the open-loop case. In addition, the overall performance of the prototype bar is compared to that of an unmodified bar of pristine geometry, revealing that a significant enlargement of the stable machining envelope is obtained through application of feedback control.

More Details

INTEGRATED MODELING AND TESTING OF A MICRO KINGED STRUCTURE FOR SLIDING FRICTION MEASUREMENT

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Redmond, James M.

This paper summarizes the design, modeling, and initial evaluation of a hinged structure for friction measurement in surface micromachining technology. While the area requirements are small, the present structure allows a much larger velocity and pressure range to be evaluated as compared to comb drive structures. The device consists of a cantilevered driver beam connected to a friction pad through a strategically located hinge. AC excitation of the beam flexure forces axial sliding of the friction pad due to beam foreshortening. Normal force is controlled by DC voltage on wings adjacent to the friction pad. While the achievable slip is small (10-30 nm), it is sufficient to disengage contacting asperities and engage new points of contact, and thus should be representative of frictional processes. Furthermore, the design enables the friction pad contact area to remain relatively constant over the excitation cycle. Computer simulation results are provided to mimic on-going experimental work. Increased friction forces are shown to enhance the size of hysteresis loops relating beam deflection to driver voltage.

More Details

ADVANCED MATERIAL DISTRIBUTION MEASUREMENT IN MULTIPHASE FLOWS: A CASE STUDY

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

O'Hern, Timothy J.

A variety of tomographic techniques that have been applied to multiphase flows are described. The methods discussed include electrical impedance tomography (EIT), magnetic resonance imaging (MRI), positron emission tomography (PET), gamma-densitometry tomography (GDT), radiative particle tracking (RDT), X-ray imaging, and acoustic tomography. Also presented is a case study in which measurements were made with EIT and GDT in two-phase flows. Both solid-liquid and gas-liquid flows were examined. EIT and GDT were applied independently to predict mean and spatially resolved phase volume fractions. The results from the two systems compared well.

More Details

DESIGN, TESTING, AND SIMULATION OF MICROSCALE GAS CHROMATOGRAPHY COLUMNS

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Hudson, Mary L.

A microscale gas chromatography column is one component in a microscale chemistry laboratory for detecting chemical agents. Several columns were fabricated using the Bosch etch process which allows deep, high aspect ratio channels of rectangular cross-section. A design tool, based on analytical models, was developed to evaluate the effects of operating conditions and column specifications on separation resolution and time. The effects of slip flow, channel configuration, and cross-sectional shape were included to evaluate the differences between conventional round, straight columns and the microscale rectangular, spiral columns. Experimental data were obtained and compared with the predicted flowrates and theoretical number of plates. The design tool was then employed to select more optimum channel dimensions and operating conditions for high resolution separations.

More Details

STUDY of HEAT FLUX GAGES USING SENSITIVITY ANALYSIS1

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Dowding, Kevin J.

The response and operation of a heat flux gage is studied using sensitivity analysis. Sensitivity analysis is the process by which one determines the sensitivity of a model output to changes in the model parameters. This process uses sensitivity coefficients, which are defined as partial derivatives of field variables (e.g. temperature) with respect to model parameters (e.g. thermal properties and boundary conditions). Computing sensitivity coefficients, in addition to the response of a heat flux gage, AIDS in identifying model parameters that significantly impact the temperature response. A control volume finite element based code is used to implement numerical sensitivity coefficient calculations, allowing general problems to be studied. Sensitivity coefficients are discussed for the well known Gardon gage.

More Details

UTILIZATION OF SENSITIVITY COEFFICIENTS TO GUIDE THE DESIGN OF A THERMAL BATTERY

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Blackwell, Bennie F.

Equations are presented to describe the sensitivity of the temperature field in a heat conducting body to changes in the volumetric heat source and volumetric heat capacity. These sensitivity equations, along with others not presented, are applied to a thermal battery problem to compute the sensitivity of the temperature field to 19 model input parameters. Sensitivity coefficients, along with assumed standard deviation in these parameters, are used to estimate the uncertainty in the temperature prediction. From the 19 parameters investigated, the battery cell heat source and volumetric heat capacity were clearly identified as being the major contributors to the overall uncertainty in the temperature predictions. The predicted operational life of the thermal battery was shown to be very sensitive to uncertainty in these parameters.

More Details

AN INVESTIGATION OF CORROSION IN LIQUID-METAL HEAT PIPES

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Adkins, Douglas R.

Research is underway to develop a 75-kW heat pipe to transfer solar energy from the focus of a parabolic dish concentrator to the heater tubes of a Stirling engine. The high flux levels and high total power level encountered in this application have made it necessary to use a high-performance wick structure with fibers on the order of 4 to 8 microns in diameter. This fine wick structure is highly susceptible to corrosion damage and plugging, as dissolved contaminants plate out on the evaporator surface. Normal operation of the heat pipe also tends to concentrate contaminants in localized areas of the evaporator surface where heat fluxes are the highest. Sandia National Laboratories is conducting a systematic study to identify procedures that reduce corrosion and contamination problems in liquid-metal heat pipes. A series of heat pipes are being tested to explore different options for cleaning heat-pipe systems. Models are being developed to help understand the overall importance of operating parameters on the life of heat-pipe systems. In this paper, we present our efforts to reduce corrosion damage.

More Details

In situ stress and moduli: Comparison of values derived from multiple techniques

Proceedings - SPE Annual Technical Conference and Exhibition

Warpinski, Norman R.

This study compares the moduli and stresses obtained from dynamic measurements (e.g., logs or tomograms) and static tests (microfracture stress tests, core tri-axial compression tests) at M-Site, where there is a full suite of both types of data as well as other supporting information. The study shows that the dynamic moduli and log-derived stresses are considerably different from the measured in situ values as determined from microfracture stress tests. 2-D images of moduli and stress were also calculated from p-wave and s-wave tomograms, but the primary value of these results is in the qualitative description of the reservoir. The choice of modulus and stress values has a significant effect on processes such as hydraulic fracturing.

More Details

Massively parallel linear stability analysis with P_ARPACK for 3D fluid flow modeled with MPSalsa

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Lehoucq, Rich

We are interested in the stability of three-dimensional fluid flows to small disturbances. One computational approach is to solve a sequence of large sparse generalized eigenvalue problems for the leading modes that arise from discretizating the differential equations modeling the flow. The modes of interest are the eigenvalues of largest real part and their associated eigenvectors. We discuss our work to develop an efficient and reliable eigensolver for use by the massively parallel simulation code MPSalsa. MPSalsa allows simulation of complex 3D fluid flow, heat transfer, and mass transfer with detailed bulk fluid and surface chemical reaction kinetics.

More Details

Determination of modal residues and residual flexibility for time-domain system realization

Journal of Guidance, Control, and Dynamics

Alvin, Kenneth F.

A linear least-squares procedure for the determination of modal residues using time-domain system realization theory is presented. The present procedure is intended to complement existing techniques for time-domain system identification and is shown to be theoretically equivalent to residue determination in realization algorithms such as the eigensystem realization algorithm and Q-Markov covariance equivalent realization method. However, isolating the optimal residue estimation problem from the general realization problem affords several alternative strategies as compared to standard realization algorithms for structural dynamics identification. Primary among these are alternative techniques for handling data sets with large numbers of sensors using small numbers of reference point responses and the inclusion of terms that accurately model the effects of residual flexibility. The accuracy and efficiency of the present realization theory-based procedure is demonstrated for both simulated and experimental data.

More Details

Failure modes in surface micromachined MicroElectroMechanical actuators

Annual Proceedings - Reliability Physics (Symposium)

Miller, Samuel L.

In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. We identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction-induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model-based operational methods, and chemical surface treatments.

More Details

Computational Fluid Dynamics Analysis of a Wire-Feed, High-Velocity Oxygen Fuel (HVOF) Thermal Spray Torch

Journal of Thermal Spray Technology

Black, Amalia R.

The fluid and particle dynamics of a high-velocity oxygen fuel (HVOF) thermal spray torch are analyzed using computational and experimental techniques. Three-dimensional computational fluid dynamics (CFD) results are presented for a curved aircap used for coating interior surfaces such as engine cylinder bores. The device analyzed is similar to the Metco diamond jet rotating wire (DJRW) torch. The feed gases are injected through an axisymmetric nozzle into the curved aircap. Premixed propylene and oxygen are introduced from an annulus in the nozzle, while cooling air is injected between the nozzle and the interior wall of the aircap. The combustion process is modeled using a single-step, finite-rate chemistry model with a total of nine gas species which includes dissociation of combustion products. A continually fed steel wire passes through the center of the nozzle, and melting occurs at a conical tip near the exit of the aircap. Wire melting is simulated computationally by injecting liquid steel particles into the flow field near the tip of the wire. Experimental particle velocity measurements during wire feed were also taken using a laser two-focus (L2F) velocimeter system. Flow fields inside and outside the aircap are presented, and particle velocity predictions are compared with experimental measurements outside of the aircap.

More Details

Application of Measured loads to wind turbine fatigue and reliability analysis

Journal of Solar Energy Engineering, Transactions of the ASME

Veers, Paul S.

Cyclic loadings produce progressive damage that can ultimately result in wind turbine structural failure. There are many issues that must be dealt with in turning load measurements into estimates of component fatigue life. This paper deals with how the measured loads can be analyzed and processed to meet the needs of both fatigue life calculations and reliability estimates. It is recommended that moments of the distribution of rainfiow-range load amplitudes be calculated and used to characterize the fatigue loading. These moments reflect successively more detailed physical characteristics of the loading (mean, spread, tail behavior). Moments can be calculated from data samples and functional forms can befitted to wind conditions, such as wind speed and turbulence intensity, with standard regression techniques. Distributions of load amplitudes that accurately reflect the damaging potential of the loadings can be estimated from the moments at any wind condition of interest. Fatigue life can then be calculated from the estimated load distributions, and the overall, long-term, or design spectrum can be generated for any particular wind-speed distribution. Characterizing the uncertainty in the distribution of cyclic loads is facilitated by using a small set of descriptive statistics for which uncertainties can be estimated. The effects of loading parameter uncertainty can then be transferred to the fatigue life estimate and compared with other uncertainties, such as material durability. © 1998 by ASME.

More Details

The influence of ion induced damage on lateral charge collection and IBIC image contrast

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Horn, Kevin M.

High resolution, calibrated ion beam induced charge (IBIC) measurements from integrated circuit test structures have demonstrated that the measured charge collection in a device can exhibit significant change after only a few hundred ions/μm2 exposure, which may easily be exceeded in the initial targeting of a structure. For the purposes of determining a circuit's upset immunity or undamaged charge collection characteristics, such behaviour must be accounted for in evaluating IBIC measurements. This paper examines the influence of low level, ion induced damage on the magnitude of the measured lateral charge collection and also its resulting impact on IBIC image contrast. The lateral charge collection process is first characterised by calculating the amount of charge which diffuses to a collecting junction as a function of carrier diffusion length and the distance between the ion strike and junction edge. The effect of accumulated ion induced damage on lateral charge collection is then incorporated as a decrease in the resultant diffusion length. Calibrated IBIC measurements from the drain of a test FET structure are then explained using this predicted behaviour. © 1998 Elsevier Science B.V.

More Details

Low-truncation-error finite difference equations for photonics simulation I: Beam propagation

Journal of Lightwave Technology

Hadley, G.R.

A methodology is presented that allows the derivation of low-truncation-error finite difference equations for photonics simulation. This methodology is applied to the case of wide-angle beam propagation in two dimensions, resulting in finite difference equations for both TE and TM polarization that are quasi-fourth-order accurate even in the presence of interfaces between dissimilar dielectrics. This accuracy is accomplished without an appreciable increase in numerical overhead and is concretely demonstrated for two test problems having known solutions. These finite difference equations facilitate an approach to the ideal of grid-independent computing and should allow the simulation of relevant photonics devices on personal computers.

More Details

Using heavy ion backscattering spectrometry (HIBS) to solve integrated circuit manufacturing problems

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Banks, James C.

Heavy Ion Backscattering Spectrometry (HIBS) is a new IBA tool for measuring extremely low levels of surface contamination on very pure substrates, such as Si wafers used in the manufacture of integrated circuits. HIBS derives its high sensitivity through the use of moderately low energy (∼100 keV) heavy ions (e.g. C12) to boost the RBS cross-section to levels approaching 1000 b, and by using specially designed time-of-flight (TOF) detectors which have been optimized to provide a large scattering solid angle with minimal kinematic broadening. A HIBS User Facility has been created which provides US industry, national laboratories, and universities with a place for conducting ultra-trace level surface contamination studies. A review of the HIBS technique is given and examples of using the facility to calibrate Total-Reflection X-ray Fluorescence Spectroscopy (TXRF) instruments and develop wafer cleaning processes are discussed. © 1998 Elsevier Science B.V.

More Details

Artificial neural network simulation of battery performance

Proceedings of the Hawaii International Conference on System Sciences

O'Gorman, Chris

Although they appear deceptively simple, batteries embody a complex set of interacting physical and chemical processes. While the discrete engineering characteristics of a battery, such as the physical dimensions of the individual components, are relatively straightforward to define explicitly, their myriad chemical and physical processes, including interactions, are much more difficult to accurately represent. For this reason, development of analytical models that can consistently predict the performance of a battery has only been partially successful, even though significant resources have been applied to this problem. As an alternative approach, we have begun development of non-phenomenological models for battery systems based on artificial neural networks. This paper describes initial feasibility studies as well as current models and makes comparisons between predicted and actual performance.

More Details

Identification of support conditions

Proceedings of the International Modal Analysis Conference - IMAC

Simmermacher, Todd W.

In this paper, a support and preload system is presented in which the frequencies and damping of the test article are affected by the stiffness and damping of the supporting structure. A dynamic model is derived for the support system that includes the damping as well as the mass and stiffness of the supports. The frequencies, damping, and mode shapes are compared with the experimentally determined parameters. It is shown that for a seemingly simple support system, deriving a predictive model is not a trivial task.

More Details

Model refinement using transient response

Proceedings of the International Modal Analysis Conference - IMAC

Dohrmann, Clark R.

A method is presented for estimating uncertain or unknown parameters in a mathematical model using measurements of transient response. The method is based on a least squares formulation in which the differences between the model and test-based responses are minimized. An application of the method is presented for a nonlinear structural dynamic system. The method is also applied to a model of the Department of Energy armored tractor trailer. For the subject problem, the transient response was generated by driving the vehicle over a bump of prescribed shape and size. Results from the analysis and inspection of the test data revealed that a linear model of the vehicle's suspension is not adequate to accurately predict the response caused by the bump.

More Details

Numerical Investigation of Leaky-Mode Coupling in VCSELs

Optics InfoBase Conference Papers

Hadley, G.R.

Recent advances in Vertical-Cavity Surface-Emitting Laser (VCSEL) technology that have led to higher efficiencies and lower thresholds have opened up a new realm of applications for these devices. In particular, phase-locked arrays of VCSELs1, previously thought to be impractical due to thermal considerations, now look extremely attractive as high-power and highbrightness sources. In addition, a new understanding of waveguiding in VCSELs2 has led to practical methods for designing phase-locked arrays employing either evansecent or leaky-mode (antiguided) coupling. The latter type of coupling is particularly attractive in light of previous calculations1 that predict especially strong mode discrimination against higher-order lateral modes. In this paper we report the first detailed simulation of leaky-mode coupling between two VCSEL pixels performed without the use of simplifying assumptions such as the effective index model. The results of this simulation are, however, found to be in good agreement with previously-developed simple theories3 of leaky-mode coupling.

More Details
Results 93326–93350 of 99,299
Results 93326–93350 of 99,299