Mechanical Characterization of Fiber Reinforced Polymer Composites
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Experimental Mechanics
Abstract not provided.
American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP
Recent experimental investigations show that most models are not able to capture the ductile behavior of metal alloys in the entire triaxiality range, especially at low triaxiality. Modelers are moving beyond stress triaxiality as the dominant indicator of material failure and developing constitutive models that incorporate shear into the evolution of the failure model. Available data that cover low triaxiality range are rare and a series of critical experiments is needed. Here, experiments of smooth thin as well as notched tubular specimens of Al6061-T651 under combined tension-torsion loading were conducted. This provides a very basic set of data for phenomenological models. A full-field deformation technique, digital image correlation (DIC), was applied to these tests to allow measurement of the field deformation, including the notched area. The microstructural features of the tested specimens were characterized to better understand the different failure mechanisms which led to ductility variation in the aluminum alloy.
American Society of Mechanical Engineers Pressure Vessels and Piping Division Publication PVP
Recent experimental investigations show that most models are not able to capture the ductile behavior of metal alloys in the entire triaxiality range, especially at low triaxiality. Modelers are moving beyond stress triaxiality as the dominant indicator of material failure and developing constitutive models that incorporate shear into the evolution of the failure model. Available data that cover low triaxiality range are rare and a series of critical experiments is needed. Here, experiments of smooth thin as well as notched tubular specimens of Al6061-T651 under combined tension-torsion loading were conducted. This provides a very basic set of data for phenomenological models. A full-field deformation technique, digital image correlation (DIC), was applied to these tests to allow measurement of the field deformation, including the notched area. The microstructural features of the tested specimens were characterized to better understand the different failure mechanisms which led to ductility variation in the aluminum alloy.
Abstract not provided.
Abstract not provided.
Abstract not provided.
This report contains the one-year feasibility study for our three-year LDRD proposal that is aimed to develop an experimental technique to measure the 3D deformation fields inside a material body. In this feasibility study, we first apply Digital Volume Correlation (DVC) algorithm to pre-existing in-situ Xray Computed Tomography (XCT) image sets with pure rigid body translation. The calculated displacement field has very large random errors and low precision that are unacceptable. Then we enhance these tomography images by setting threshold of the intensity of each slice. DVC algorithm is able to obtain accurate deformation fields from these enhanced image sets and the deformation fields are consistent with the global mechanical loading that is applied to the specimen. Through this study, we prove that the internal markers inside the pre-existing tomography images of aluminum alloy can be enhanced and are suitable for DVC to calculate the deformation field throughout the material body.
This report summarizes computational efforts to model interfacial fracture using cohesive zone models in the SIERRA/SolidMechanics (SIERRA/SM) finite element code. Cohesive surface elements were used to model crack initiation and propagation along predefined paths. Mesh convergence was observed with SIERRA/SM for numerous geometries. As the funding for this project came from the Advanced Simulation and Computing Verification and Validation (ASC V&V) focus area, considerable effort was spent performing verification and validation. Code verification was performed to compare code predictions to analytical solutions for simple three-element simulations as well as a higher-fidelity simulation of a double-cantilever beam. Parameter identification was conducted with Dakota using experimental results on asymmetric double-cantilever beam (ADCB) and end-notched-flexure (ENF) experiments conducted under Campaign-6 funding. Discretization convergence studies were also performed with respect to mesh size and time step and an optimization study was completed for mode II delamination using the ENF geometry. Throughout this verification process, numerous SIERRA/SM bugs were found and reported, all of which have been fixed, leading to over a 10-fold increase in convergence rates. Finally, mixed-mode flexure experiments were performed for validation. One of the unexplained issues encountered was material property variability for ostensibly the same composite material. Since the variability is not fully understood, it is difficult to accurately assess uncertainty when performing predictions.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Conference Proceedings of the Society for Experimental Mechanics Series
A current Kolsky tension bar has been implemented with pre-tension-load capability to investigate the effect of preload on the high-rate response in tension of materials and structures. In this study, fully threaded brass studs have been experimentally investigated in terms of pre-tension-load effect on the tensile stress-strain response at the same high strain rate. The preload is not observed to significantly influence the plastic flow stress. The failure responses are quite different, however, when different pre-tension loads are applied. © The Society for Experimental Mechanics, Inc. 2013.
Conference Proceedings of the Society for Experimental Mechanics Series
Various loading and measuring configurations have been developed in Hopkinson bar fracture toughness experimental techniques. It is well known that several fundamental issues, such as force equilibrium, pulse shaping, stress-wave propagation, etc., must be evaluated in order to obtain a reliable measurement. In our previous work of characterizing Mode II dynamic fracture toughness of a woven composite, highly sensitive polyvinylidene fluoride (PVDF) force transducers were employed to check the forces on the front wedge and back spans in a SHPB ENF experiment. The results show that proper pulse shaping is necessary so the specimen can achieve stress equilibrium before the crack starts to propagate. This study addresses the issue that stress wave propagates through the non-uniform section, which is between the incident and transmission bars including the specimen, loading wedge, and supporting fixture. The transmitted signals are compared with PVDF measurements, and also with numerical simulations of stress waves propagate through supporting fixture and down to the transmission bar. © The Society for Experimental Mechanics, Inc. 2013.
Conference Proceedings of the Society for Experimental Mechanics Series
A current Kolsky tension bar has been implemented with pre-tension-load capability to investigate the effect of preload on the high-rate response in tension of materials and structures. In this study, fully threaded brass studs have been experimentally investigated in terms of pre-tension-load effect on the tensile stress-strain response at the same high strain rate. The preload is not observed to significantly influence the plastic flow stress. The failure responses are quite different, however, when different pre-tension loads are applied. © The Society for Experimental Mechanics, Inc. 2013.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.