Publications

Results 1–50 of 205

Search results

Jump to search filters

Custom-form iron trifluoride Li-batteries using material extrusion and electrolyte exchanged ionogels

Additive Manufacturing

Cardenas, Jorge A.; Bullivant, John P.; Wygant, Bryan R.; Lapp, Aliya S.; Bell, Nelson S.; Lambert, Timothy N.; Merrill, Laura C.; Talin, Albert A.; Cook, Adam; Allcorn, Eric; Harrison, Katharine L.

Custom-form factor batteries fabricated in non-conventional shapes can maximize the overall energy density of the systems they power, particularly when used in conjunction with energy dense materials (e.g., Li metal anodes and conversion cathodes). Additive manufacturing (AM), and specifically material extrusion (ME), have been shown as effective methods for producing custom-form cell components, particularly electrodes. However, the AM of several promising energy dense materials (conversion electrodes such as iron trifluoride) have yet to be demonstrated or optimized. Furthermore, the integration of multiple AM produced cell components, such as electrodes and separators, along with a custom package remains largely unexplored. In this work, iron trifluoride (FeF3) and ionogel (IG) separators are conformally printed using ME onto non-planar surfaces to enable the fabrication of custom-form Li-FeF3 batteries. To demonstrate printing on non-planar surfaces, cathodes and separators were deposited onto cylindrical rods using a 5-axis ME printer. ME printed FeF3 was shown to have performance commensurate with FeF3 cast using conventional means, both in coin cell and cylindrical rod formats, with capacities exceeding 700 mAh/g on the first cycle and ranging between 600 and 400 mAh/g over the next 50 cycles. Additionally, a ME process for printing polyvinylidene fluoride-co-hexafluoropropylene (PVDF-HFP) based IGs directly onto FeF3 is developed and enabled using an electrolyte exchange process. In coin cells, this process is shown to produce cells with similar capacity to cells built with Celgard separators out to 50 cycles, with the exception that cycling instabilities are observed during cycles 8–20. When using printed and exchanged IGs in a custom cylindrical cell package, 6 stable high-capacity cycles are achieved. Overall, this work demonstrates approaches for producing high-energy-density Li-FeF3 cells in coin and cylindrical rod formats, which are translatable to customized, arbitrary geometries compatible with ME printing and electrolyte exchange.

More Details

Influence of Defects and Surfaces on the Electrochemical Performance of MnO2 Cathodes in Rechargeable Alkaline Zn/MnO2 Batteries: A First-Principles Study

ACS Applied Energy Materials

Paudel, Nirajan; Magar, Birendra A.; Acharya, Krishna; Lambert, Timothy N.; Vasiliev, Igor

Manganese dioxide is a promising cathode material for energy storage applications because of its high redox potential, large theoretical energy density, abundance, and low cost. It has been shown that the performance of MnO2 electrodes in rechargeable alkaline Zn/MnO2 batteries could be improved by nanostructuring and by increasing the concentration of defects in MnO2. However, the underlying mechanism of this improvement is not completely clear. We used an ab initio density functional computational approach to investigate the influence of nanostructuring and crystal defects on the electrochemical properties of the MnO2 cathode material. The mechanism of electrochemical discharge of MnO2 in Zn/MnO2 batteries was studied by modeling the process of H ion insertion into the structures of pyrolusite, ramsdellite, and nsutite polymorphs containing oxygen vacancies, cation vacancies, and open surfaces. Our calculations showed that the binding energies of H ions inserted into the structures of MnO2 polymorphs were strongly affected by the presence of surfaces and bulk defects. In particular, we found that the energies of H ions inserted under the surfaces and attached to the surfaces of MnO2 crystals were significantly lower than those for bulk MnO2. Furthermore, the results of our study provide an explanation for the influence of crystal defects and nanostructuring on the electrochemical reactivity of MnO2 cathodes in rechargeable alkaline Zn/MnO2 batteries.

More Details

Use of Hydrogel Electrolyte in Zn-MnO2 Rechargeable Batteries: Characterization of Safety, Performance, and Cu2+ Ion Diffusion

Polymers

Cho, Jungsang; Turney, Damon E.; Yadav, Gautam G.; Nyce, Michael; Wygant, Bryan R.; Lambert, Timothy N.; Banerjee, Sanjoy

Achieving commercially acceptable Zn-MnO2 rechargeable batteries depends on the reversibility of active zinc and manganese materials, and avoiding side reactions during the second electron reaction of MnO2. Typically, liquid electrolytes such as potassium hydroxide (KOH) are used for Zn-MnO2 rechargeable batteries. However, it is known that using liquid electrolytes causes the formation of electrochemically inactive materials, such as precipitation Mn3O4 or ZnMn2O4 resulting from the uncontrollable reaction of Mn3+ dissolved species with zincate ions. In this paper, hydrogel electrolytes are tested for MnO2 electrodes undergoing two-electron cycling. Improved cell safety is achieved because the hydrogel electrolyte is non-spillable, according to standards from the US Department of Transportation (DOT). The cycling of “half cells” with advanced-formulation MnO2 cathodes paired with commercial NiOOH electrodes is tested with hydrogel and a normal electrolyte, to detect changes to the zincate crossover and reaction from anode to cathode. These half cells achieved ≥700 cycles with 99% coulombic efficiency and 63% energy efficiency at C/3 rates based on the second electron capacity of MnO2. Other cycling tests with “full cells” of Zn anodes with the same MnO2 cathodes achieved ~300 cycles until reaching 50% capacity fade, a comparable performance to cells using liquid electrolyte. Electrodes dissected after cycling showed that the liquid electrolyte allowed Cu ions to migrate more than the hydrogel electrolyte. However, measurements of the Cu diffusion coefficient showed no difference between liquid and gel electrolytes; thus, it was hypothesized that the gel electrolytes reduced the occurrence of Cu short circuits by either (a) reducing electrode physical contact to the separator or (b) reducing electro-convective electrolyte transport that may be as important as diffusive transport.

More Details

Room-Temperature Pseudo-Solid-State Iron Fluoride Conversion Battery with High Ionic Conductivity

ACS Applied Materials and Interfaces

Lapp, Aliya S.; Merrill, Laura C.; Wygant, Bryan R.; Ashby, David S.; Bhandarkar, Austin; Zhang, Alan C.; Fuller, Elliot J.; Harrison, Katharine L.; Lambert, Timothy N.; Talin, Albert A.

Li-metal batteries (LMBs) employing conversion cathode materials (e.g., FeF3) are a promising way to prepare inexpensive, environmentally friendly batteries with high energy density. Pseudo-solid-state ionogel separators harness the energy density and safety advantages of solid-state LMBs, while alleviating key drawbacks (e.g., poor ionic conductivity and high interfacial resistance). In this work, a pseudo-solid-state conversion battery (Li-FeF3) is presented that achieves stable, high rate (1.0 mA cm–2) cycling at room temperature. The batteries described herein contain gel-infiltrated FeF3 cathodes prepared by exchanging the ionic liquid in a polymer ionogel with a localized high-concentration electrolyte (LHCE). The LHCE gel merges the benefits of a flexible separator (e.g., adaptation to conversion-related volume changes) with the excellent chemical stability and high ionic conductivity (~2 mS cm–1 at 25 °C) of an LHCE. The latter property is in contrast to previous solid-state iron fluoride batteries, where poor ionic conductivities necessitated elevated temperatures to realize practical power levels. Importantly, the stable, room-temperature Li-FeF3 cycling performance obtained with the LHCE gel at high current densities paves the way for exploring a range of architectures including flexible, three-dimensional, and custom shape batteries.

More Details

A pseudo-two-dimensional (P2D) model for FeS2 conversion cathode batteries

Journal of Power Sources

Horner, Jeffrey S.; Whang, Grace; Kolesnichenko, Igor V.; Lambert, Timothy N.; Dunn, Bruce S.; Roberts, Scott A.

Conversion cathode materials are gaining interest for secondary batteries due to their high theoretical energy and power density. However, practical application as a secondary battery material is currently limited by practical issues such as poor cyclability. To better understand these materials, we have developed a pseudo-two-dimensional model for conversion cathodes. We apply this model to FeS2 – a material that undergoes intercalation followed by conversion during discharge. The model is derived from the half-cell Doyle–Fuller–Newman model with additional loss terms added to reflect the converted shell resistance as the reaction progresses. We also account for polydisperse active material particles by incorporating a variable active surface area and effective particle radius. Using the model, we show that the leading loss mechanisms for FeS2 are associated with solid-state diffusion and electrical transport limitations through the converted shell material. The polydisperse simulations are also compared to a monodisperse system, and we show that polydispersity has very little effect on the intercalation behavior yet leads to capacity loss during the conversion reaction. We provide the code as an open-source Python Battery Mathematical Modeling (PyBaMM) model that can be used to identify performance limitations for other conversion cathode materials.

More Details

Acetate-based water-in-salt electrolytes (WiSE) for improved zinc battery cycling [Poster]

Dutta, Debayon; Turney, Damon; Lambert, Timothy N.; Messinger, Robert J.; Banerjee, Sanjoy

Grid scale batteries need to be inexpensive to manufacture, safe to operate, and non-toxic in composition. Zinc aqueous (alkaline) batteries hold much promise, but good cycle life and utilization of the zinc has proven difficult partly because zinc is susceptible to H2 gas evolution in KOH. Water-insalt electrolyte (WiSE) can address this shortcoming by lowering the activity of free water molecules in solution, thus reducing H2 gas evolution. In this work, we show the relevant fundamental physicochemical properties of an acetate-based WiSE to establish the practicality and performance of this class of WiSE for battery application. Research and understanding of acetate WiSE is in a nascent state, presently.

More Details

Temperature-Dependent Reaction Pathways in FeS2: Reversibility and the Electrochemical Formation of Fe3S4

Chemistry of Materials

Whang, Grace; Ashby, David S.; Lapp, Aliya S.; Hsieh, Yi C.; Butts, Danielle M.; Kolesnichenko, Igor V.; Wu, Pu W.; Lambert, Timothy N.; Talin, Albert A.; Dunn, Bruce S.

The present study has used a variety of characterization techniques to determine the products and reaction pathways involved in the rechargeable Li-FeS2 system. We revisit both the initial lithiation and subsequent cycling of FeS2 employing an ionic liquid electrolyte to investigate the intermediate and final charge products formed under varying thermal conditions (room temperature to 100 °C). The detection of Li2S and hexagonal FeS as the intermediate phases in the initial lithiation and the electrochemical formation of greigite, Fe3S4, as a charge product in the rechargeable reaction differ significantly from previous reports. The conditions for Fe3S4 formation are shown to be dependent on both the temperature (∼60 °C) and the availability of sulfur to drive a FeS to Fe3S4 transformation. Upon further cycling, Fe3S4 transforms to a lower sulfur content iron sulfide phase, a process which coincides with the loss of sulfur based on the new reaction pathways established in this work. The connection between sulfur loss, capacity fade, and charge product composition highlights the critical need to retain sulfur in the active material upon cycling.

More Details

Understanding the Electrochemical Performance of FeS2Conversion Cathodes

ACS Applied Materials and Interfaces

Ashby, David S.; Horner, Jeffrey S.; Whang, Grace; Lapp, Aliya S.; Roberts, Scott A.; Dunn, Bruce; Kolesnichenko, Igor V.; Lambert, Timothy N.; Talin, Albert A.

Conversion cathodes represent a viable route to improve rechargeable Li+battery energy densities, but their poor electrochemical stability and power density have impeded their practical implementation. Here, we explore the impact cell fabrication, electrolyte interaction, and current density have on the electrochemical performance of FeS2/Li cells by deconvoluting the contributions of the various conversion and intercalation reactions to the overall capacity. By varying the slurry composition and applied pressure, we determine that the capacity loss is primarily due to the large volume changes during (de)lithiation, leading to a degradation of the conductive matrix. Through the application of an external pressure, the loss is minimized by maintaining the conductive matrix. We further determine that polysulfide loss can be minimized by increasing the current density (>C/10), thus reducing the sulfur formation period. Analysis of the kinetics determines that the conversion reactions are rate-limiting, specifically the formation of metallic iron at rates above C/8. While focused on FeS2, our findings on the influence of pressure, electrolyte interaction, and kinetics are broadly applicable to other conversion cathode systems.

More Details

Electroactive ZnO: Mechanisms, Conductivity, and Advances in Zn Alkaline Battery Cycling

Advanced Energy Materials

Hawkins, Brendan E.; Turney, Damon E.; Messinger, Robert J.; Kiss, Andrew M.; Yadav, Gautam G.; Banerjee, Sanjoy; Lambert, Timothy N.

Zinc oxide is of great interest for advanced energy devices because of its low cost, wide direct bandgap, non-toxicity, and facile electrochemistry. In zinc alkaline batteries, ZnO plays a critical role in electrode passivation, a process that hinders commercialization and remains poorly understood. Here, novel observations of an electroactive type of ZnO formed in Zn-metal alkaline electrodes are disclosed. The electrical conductivity of battery-formed ZnO is measured and found to vary by factors of up to 104, which provides a first-principles-based understanding of Zn passivation in industrial alkaline batteries. Simultaneous with this conductivity change, protons are inserted into the crystal structure and electrons are inserted into the conduction band in quantities up to ≈1020 cm−3 and ≈1 mAh gZnO−1. Electron insertion causes blue electrochromic coloration with efficiencies and rates competitive with leading electrochromic materials. The electroactivity of ZnO is evidently enabled by rapid crystal growth, which forms defects that complex with inserted cations, charge-balanced by the increase of conduction band electrons. This property distinguishes electroactive ZnO from inactive classical ZnO. Knowledge of this phenomenon is applied to improve cycling performance of industrial-design electrodes at 50% zinc utilization and the authors propose other uses for ZnO such as electrochromic devices.

More Details

Morphology and Dynamics in Hydroxide-Conducting Polysulfones

ACS Applied Polymer Materials

Frischknecht, Amalie L.; In 'T Veld, Pieter J.; Kolesnichenko, Igor V.; Arnot, David J.; Lambert, Timothy N.

In alkaline zinc–manganese dioxide batteries, there is a need for selective polymeric separators that have good hydroxide ion conductivity but that prevent the transport of zincate (Zn(OH)4)2-. Here we investigate the nanoscale structure and hydroxide transport in two cationic polysulfones that are promising for these separators. We present the synthesis and characterization for a tetraethylammonium-functionalized polysulfone (TEA-PSU) and compare it to our previous work on an N-butylimidazolium-functionalized polysulfone (NBI-PSU). We perform atomistic molecular dynamics (MD) simulations of both polymers at experimentally relevant water contents. The MD simulations show that both polymers develop well phase separated nanoscale water domains that percolate through the polymer. Calculation of the total scattering intensity from the MD simulations reveal weak or nonexistent ionomer peaks at low wave vectors. The lack of an ionomer peak is due to a loss of contrast in the scattering. The small water domains in both polymers, with median diameters on the order of 0.5–0.7 nm, lead to hydroxide and water diffusion constants that are 1–2 orders of magnitude smaller than their values in bulk water. This confinement lowers the conductivity but also may explain the strong exclusion of zincate from the PSU membranes seen experimentally.

More Details

Revisiting Discharge Mechanism of CFx as a High Energy Density Cathode Material for Lithium Primary Battery

Advanced Energy Materials

Sayahpour, Baharak; Hirsh, Hayley; Bai, Shuang; Schorr, Noah B.; Lambert, Timothy N.; Mayer, Matthew; Bao, Wurigumula; Cheng, Diyi; Zhang, Minghao; Leung, Kevin; Harrison, Katharine L.; Li, Weikang; Meng, Ying S.

Lithium/fluorinated graphite (Li/CFx) primary batteries show great promise for applications in a wide range of energy storage systems due to their high energy density (>2100 Wh kg–1) and low self-discharge rate (<0.5% per year at 25 °C). While the electrochemical performance of the CFx cathode is indeed promising, the discharge reaction mechanism is not thoroughly understood to date. In this article, a multiscale investigation of the CFx discharge mechanism is performed using a novel cathode structure to minimize the carbon and fluorine additives for precise cathode characterizations. Titration gas chromatography, X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, cross-sectional focused ion beam, high-resolution transmission electron microscopy, and scanning transmission electron microscopy with electron energy loss spectroscopy are utilized to investigate this system. Results show no metallic lithium deposition or intercalation during the discharge reaction. Crystalline lithium fluoride particles uniformly distributed with <10 nm sizes into the CFx layers, and carbon with lower sp2 content similar to the hard-carbon structure are the products during discharge. This article deepens the understanding of CFx as a high energy density cathode material and highlights the need for future investigations on primary battery materials to advance performance.

More Details

Electrochemical Modeling of GITT Measurements for Improved Solid-State Diffusion Coefficient Evaluation

ACS Applied Energy Materials

Horner, Jeffrey S.; Whang, Grace; Ashby, David S.; Kolesnichenko, Igor V.; Lambert, Timothy N.; Dunn, Bruce S.; Talin, Albert A.; Roberts, Scott A.

The galvanostatic intermittent titration technique (GITT) is widely used to evaluate solid-state diffusion coefficients in electrochemical systems. However, the existing analysis methods for GITT data require numerous assumptions, and the derived diffusion coefficients typically are not independently validated. To investigate the validity of the assumptions and derived diffusion coefficients, we employ a direct-pulse fitting method for interpreting the GITT data that involves numerically fitting an electrochemical pulse and subsequent relaxation to a one-dimensional, single-particle, electrochemical model coupled with non-ideal transport to directly evaluate diffusion coefficients. Our non-ideal diffusion coefficients, which are extracted from GITT measurements of the intercalation regime of FeS2 and independently verified through discharge predictions, prove to be 2 orders of magnitude more accurate than ideal diffusion coefficients extracted using conventional methods. We further extend our model to a polydisperse set of particles to show the validity of a single-particle approach when the modeled radius is proportional to the total volume-to-surface-area ratio of the system.

More Details

Rechargeable Alkaline Zinc/Copper Oxide Batteries

ACS Applied Energy Materials

Schorr, Noah B.; Arnot, David J.; Bruck, Andrea M.; Duay, Jonathon; Kelly, Maria; Habing, Rachel; Ricketts, Logan S.; Vigil, Julian A.; Gallaway, Joshua W.; Lambert, Timothy N.

Resurrecting a battery chemistry thought to be only primary, we demonstrate the first example of a rechargeable alkaline zinc/copper oxide battery. With the incorporation of a Bi2O3additive to stabilize the copper oxide-based conversion cathode, Zn/(CuO-Bi2O3) cells are capable of cycling over 100 times at >124 W h/L, with capacities from 674 mA h/g (cycle 1) to 362 mA h/g (cycle 150). The crucial role of Bi2O3in facilitating the electrochemical reversibility of Cu2O, Cu(OH)2, and Cuowas supported by scanning and transmission electrochemical microscopy, cyclic voltammetry, and rotating ring-disc electrode voltammetry and monitoredvia operandoenergy-dispersive X-ray diffraction measurements. Bismuth was identified as serving two roles, decreasing the cell resistance and promoting Cu(I) and Cu(II) reduction. To mitigate the capacity losses of long-term cycling CuO cells, we demonstrate two limited depth of discharge (DOD) strategies. First, a 30% DOD (202 mA h/g) retains 99.9% capacity over 250 cycles. Second, the modification of the CuO cathode by the inclusion of additional Cu metal enables performance at very high areal capacities of ∼40 mA h/cm2and unprecedented energy densities of ∼260 W h/L, with near 100% Coulombic efficiency. This work revitalizes a historically primary battery chemistry and opens opportunity to future works in developing copper-based conversion cathode chemistries for the realization of low-cost, safe, and energy-dense secondary batteries.

More Details

Advances in Alkaline Conversion Batteries for Grid Storage Applications

Lambert, Timothy N.; Schorr, Noah B.; Arnot, David J.; Lim, Matthew; Bell, Nelson S.; Bruck, Andrea M.; Duay, Jonathon; Kelly, Maria; Habing, Rachel; Ricketts, Logan S.; Vigil, Julian A.; Gallaway, Joshua; Kolesnichenko, Igor V.; Budy, Stephen M.; Ruiz, Elijah I.; Yadav, Gautam; Weiner, Meir; Upreti, Aditya; Huang, Jinchao; Nyce, Michael; Turney, Damon; Banerjee, Sanjoy; Magar, Birendra; Paudel, Nirajan; Vasiliev, Igor; Spoerke, Erik D.; Chalamala, Babu C.

Abstract not provided.

Bismuth Detection in Alkaline Electrolyte via Anodic Stripping Voltammetry for Battery Separator Evaluation

Electroanalysis

Arnot, David J.; Lambert, Timothy N.

Anodic stripping voltammetry (ASV) has been widely used for the detection of several heavy metal ions in neutral and acidic solution, in many cases employing electrodes and/or solutions incorporating Bi. In this work we demonstrate that Bi(OH)4− ion concentration can be measured in highly alkaline 8.5 M KOH solution using ASV. The addition of Pb in similar concentrations to the Bi(OH)4− being measured is shown to improve both the sensitivity and precision of the method. When the Pb additive is employed, a formal limit of detection of 8.5 ppb is achieved, compared to 17.3 ppb when the Pb additive is not used. Due to the use of Bi additives in alkaline battery chemistries, it follows that separators which limit Bi(OH)4− diffusion into the bulk electrolyte and away from the electrodes are of interest. For this purpose, we utilize ASV to determine Bi(OH)4− diffusion rates through Celgard 3501, cellophane 350P00, and Nafion 211. Bi(OH)4− crossover rates, as determined by ASV, are shown to be repeatable and consistent with expectations from the known separator structure.

More Details
Results 1–50 of 205
Results 1–50 of 205