A series of tests have been performed on Sierra White granite subjected to general (true triaxial) states of stress. Tests were performed under constant Lode angle conditions at Lode angles of 23.4, 16.1 and 0°. The constant Lode angle condition was maintained by holding the minimum principal stress constant while increasing the maximum and intermediate principal stress at a predetermined ratio. Tests were performed at minimum principal stresses of 5, 17 and 30 MPa. All of the specimens failed in a brittle manner, with significant dilatant volume strain accumulated, and failure showed a strong dependence on Lode angle. Specimens behaved in a nearly linear elastic manner until approximately 75% of the peak stress was reached. The angle of the failure feature (shear band) was compared to predictions developed by using the Rudnicki and Rice (1975) localization criterion. It was found that there was good agreement (within 7°) between the experimental results and theoretical predictions.
Dissolved CO2 in the subsurface resulting from geological CO2 storage may react with minerals in fractured rocks, confined aquifers, or faults, resulting in mineral precipitation and dissolution. The overall rate of reaction can be affected by coupled processes including hydrodynamics, transport, and reactions at the (sub) pore-scale. In this work pore-scale modeling of coupled fluid flow, reactive transport, and heterogeneous reactions at the mineral surface is applied to account for permeability alterations caused by precipitation-induced pore-blocking. This work is motivated by observations of CO2 seeps from a natural CO2 sequestration analog, Crystal Geyser, Utah. Observations along the surface exposure of the Little Grand Wash fault indicate the lateral migration of CO2 seep sites (i.e., alteration zones) of 10–50 m width with spacing on the order of ~100 m over time. Sandstone permeability in alteration zones is reduced by 3–4 orders of magnitude by carbonate cementation compared to unaltered zones. One granular porous medium and one fracture network systems are used to conceptually represent permeable porous media and locations of conduits controlled by fault-segment intersections and/or topography, respectively. Simulation cases accounted for a range of reaction regimes characterized by the Damköhler (Da) and Peclet (Pe) numbers. Pore-scale simulation results demonstrate that combinations of transport (Pe), geochemical conditions (Da), solution chemistry, and pore and fracture configurations contributed to match key patterns observed in the field of how calcite precipitation alters flow paths by pore plugging. This comparison of simulation results with field observations reveals mechanistic explanations of the lateral migration and enhances our understanding of subsurface processes associated with the CO2 injection. In addition, permeability and porosity relations are constructed from pore-scale simulations which account for a range of reaction regimes characterized by the Da and Pe numbers. The functional relationships obtained from pore-scale simulations can be used in a continuum scale model that may account for large-scale phenomena mimicking lateral migration of surface CO2 seeps.
We characterize geomechanical constitutive behavior of reservoir sandstones at conditions simulating the “Cranfield” Southeast Regional Carbon Sequestration Partnership injection program. From two cores of Lower Tuscaloosa Formation, three sandstone lithofacies were identified for mechanical testing based on permeability and lithology. These include: chlorite-cemented conglomeratic sandstone (Facies A); quartz-cemented fine sandstone (Facies B); and quartz- and calcite-cemented very fine sandstone (Facies C). We performed a suite of compression tests for each lithofacies at 100 °C and pore pressure of 30 MPa, including hydrostatic compression and triaxial tests at several confining pressures. Plugs were saturated with supercritical CO2-saturated brine. Chemical environment affected the mechanical response of all three lithofacies, which experience initial plastic yielding at stresses far below estimated in situ stress. Measured elastic moduli degradation defines a secondary yield surface coinciding with in situ stress for Facies B and C. Facies A shows measurable volumetric creep strain and a failure envelope below estimates of in situ stress, linked to damage of chlorite cements by acidic pore solutions. The substantial weakening of a particular lithofacies by CO2 demonstrates a possible chemical-mechanical coupling during injection at Cranfield with implications for CO2 injection, reservoir permeability stimulation, and enhanced oil recovery.