A reassessment of historical drag coefficient data for spherical particles accelerated in shock-induced flows has motivated new shock tube experiments of particle response to the passage of a normal shock wave. Particle drag coefficients were measured by tracking the trajectories of 1-mm spheres in the wake of incident shocks of Mach numbers 1.68, 1.93, and 2.05. Data clearly show that as the Mach number increases, the drag coefficient increases substantially, consistent with past experiments. This increase significantly exceeds the drag predicted by incompressible standard drag models, but recently developed compressible drag models return values quite close to the current measurements. Low values for the acceleration parameter indicate that unsteadiness should not be expected to contribute to the drag increase. These observations suggest that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness.
Currently there is a substantial lack of data for interactions of shock waves with particle fields having volume fractions residing between the dilute and granular regimes, which creates one of the largest sources of uncertainty in the simulation of energetic material detonation. To close this gap, a novel Multiphase Shock Tube has been constructed to drive a planar shock wave into a dense gas-solid field of particles. A nearly spatially isotropic field of particles is generated in the test section by a gravity-fed method that results in a spanwise curtain of spherical 100-micron particles having a volume fraction of about 19%. Interactions with incident shock Mach numbers of 1.66, 1.92, and 2.02 were achieved. High-speed schlieren imaging simultaneous with high-frequency wall pressure measurements are used to reveal the complex wave structure associated with the interaction. Following incident shock impingement, transmitted and reflected shocks are observed, which lead to differences in particle drag across the streamwise dimension of the curtain. Shortly thereafter, the particle field begins to propagate downstream and spread. For all three Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced about 30-40% by the presence of the particle field. X-Ray diagnostics have been developed to penetrate the opacity of the flow, revealing the concentrations throughout the particle field as it expands and spreads downstream with time. Furthermore, an X-Ray particle tracking velocimetry diagnostic has been demonstrated to be feasible for this flow, which can be used to follow the trajectory of tracer particles seeded into the curtain. Additional experiments on single spherical particles accelerated behind an incident shock wave have shown that elevated particle drag coefficients can be attributed to increased compressibility rather than flow unsteadiness, clarifying confusing results from the historical database of shock tube experiments. The development of the Multiphase Shock Tube and associated diagnostic capabilities offers experimental capability to a previously inaccessible regime, which can provide unprecedented data concerning particle dynamics of dense gas-solid flows.
A novel multiphase shock tube has been constructed to test the interaction of a planar shock wave with a dense gas-solid field of particles. The particle field is generated by a gravity-fed method that results in a spanwise curtain of 100-micron particles producing a volume fraction of about 15%. Interactions with incident shock Mach numbers of 1.67 and 1.95 are reported. High-speed schlieren imaging is used to reveal the complex wave structure associated with the interaction. After the impingement of the incident shock, transmitted and reflected shocks are observed, which lead to differences in flow properties across the streamwise dimension of the curtain. Tens of microseconds after the onset of the interaction, the particle field begins to propagate downstream, and disperse. The spread of the particle field, as a function of its position, is seen to be nearly identical for both Mach numbers. Immediately downstream of the curtain, the peak pressures associated with the Mach 1.67 and 1.95 interactions are about 35% and 45% greater than tests without particles, respectively. For both Mach numbers tested, the energy and momentum fluxes in the induced flow far downstream are reduced by about 30-40% by the presence of the particle field.
A novel multiphase shock tube has recently been developed to study particle dynamics in gas-solid flows having particle volume fractions that reside between the dilute and granular regimes. The method for introducing particles into the tube involves the use of a gravity-fed contoured particle seeder, which is capable of producing dense fields of spatially isotropic particles. The facility is capable of producing planar shocks having a maximum shock Mach number of about 2.1 that propagate into air at initially ambient conditions. The primary purpose of this new facility is to provide high fidelity data of shock-particle interactions in flows having particle volume fractions of about 1 to 50%. To achieve this goal, the facility drives a planar shock into a spatially isotropic field, or curtain, of particles. Experiments are conducted for two configurations where the particle curtain is either parallel to the spanwise, or the streamwise direction. Arrays of high-frequency-response pressure transducers are placed near the particle curtain to measure the attenuation and shape change of the shock owing to its interaction with the dense gas particle field. In addition, simultaneous high-speed imaging is used to visualize the impact of the shock on the particle curtain and to measure the particle motion induced downstream of the shock.
As the capabilities of numerical simulations increase, decision makers are increasingly relying upon simulations rather than experiments to assess risks across a wide variety of accident scenarios including fires. There are still, however, many aspects of fires that are either not well understood or are difficult to treat from first principles due to the computational expense. For a simulation to be truly predictive and to provide decision makers with information which can be reliably used for risk assessment the remaining physical processes must be studied and suitable models developed for the effects of the physics. A set of experiments are outlined in this report which will provide soot volume fraction/temperature data and heat flux (intensity) data for the validation of models for the radiative transfer equation. In addition, a complete set of boundary condition measurements will be taken to allow full fire predictions for validation of the entire fire model. The experiments will be performed with a lightly-sooting liquid hydrocarbon fuel fire in the fully turbulent scale range (2 m diameter).
A novel multiphase shock tube to study particle dynamics in gas-solid flows has been constructed and tested. Currently, there is a gap in data for flows having particle volume fractions between the dusty and granular regimes. The primary purpose of this new facility is to fill that gap by providing high quality data of shock-particle interactions in flows having dense gas particle volume fractions. Towards this end, the facility aims to drive a shock into a spatially isotropic field, or curtain, of particles. Through bench-top experimentation, a method emerged for achieving this challenging task that involves the use of a gravity-fed contoured particle seeder. The seeding method is capable of producing fields of spatially isotropic particles having volume fractions of about 1 to 35%. The use of the seeder in combination with the shock tube allows for the testing of the impingement of a planar shock on a dense field of particles. The first experiments in the multiphase shock tube have been conducted and the facility is now operational.
Laser-induced incandescence measurements have recently been obtained from 10% and 30% toluene in methanol blended fuel pool fires of 2-m diameter. Calibration of the instrument was performed using an ethylene/air laminar diffusion flame produced by a Santoro-type burner which allowed the extraction of absolute soot-volume-fractions from these images. Performance of the optical probe was characterized using the laminar diffusion flame and corrections were implemented for signal dependence upon detector gain, flat field, and location within the probe laser sheet when processing the images. Probability density functions of the soot-volume fraction were constructed for the blended fuels used in this study and the mean values were determined to be 0.0077 and 0.028 ppm for the 10% and 30% blended fuels, respectively. Signal trapping was estimated for the two types of blended fuel and it was determined to be negligible for the 10% toluene/methanol blend and require {approx}10% correction for the 30% toluene/methanol blend.
We report an application of coherent anti-Stokes Raman scattering (CARS) to full-scale fire testing. A CARS instrument has been constructed at the newly commissioned FLAME (Fire Laboratory for Accreditation of Models and Experiments) facility at Sandia, where the CARS system has been used for thermometry in 2-m-diameter, turbulent pool fires. The details of a CARS instrument for probing the challenging pool-fire environment are presented, along with the construction of the unique new FLAME facility itself, which has been designed to accommodate optical and laser-based diagnostics to full-scale fire experimentation. Single-shot CARS spectra and best-fit temperatures from turbulent pool fires are presented, and an estimate of the pdf of the temperature fluctuations from the pool-fire environment is obtained.