Publications

Results 276–300 of 304

Search results

Jump to search filters

Probabilistic performance assessment: SCC of SNF interim storage canisters

15th International High-Level Radioactive Waste Management Conference 2015, IHLRWM 2015

Bryan, C.R.; Sallaberry, Cedric J.; Dingreville, Remi; Stockman, Christine T.; Adkins, H.; Sutton, M.

For long-term storage, spent nuclear fuel (SNF) is placed in dry storage cask systems, commonly consisting of welded stainless steel containers enclosed in ventilated cement or steel overpacks. At near-marine sites, failure by chloride-induced stress corrosion cracking (SCC) due to deliquescence of deposited salt aerosols is a major concern. This paper presents a preliminary probabilistic performance assessment model to assess canister penetration by SCC. The model first determines whether conditions for salt deliquescence are present at any given location on the canister surface, using an abstracted waste package thermal model and site-specific weather data (ambient temperature and absolute humidity). As the canister cools and aqueous conditions become possible, corrosion is assumed to initiate and is modeled as pitting (initiation and growth). With increasing penetration, pits convert to SCC and a crack growth model is implemented. The SCC growth model includes rate dependencies on temperature and crack tip stress intensity factor. The amount of penetration represents the summed effect of corrosion during time steps when aqueous conditions are predicted to occur. Model results and sensitivity analyses provide information on the impact of model assumptions and parameter values on predicted storage canister performance, and provide guidance for further research to reduce uncertainties.

More Details

Electron beam effects during in-situ annealing of self-ion irradiated nanocrystalline nickel

Materials Research Society Symposium Proceedings

Muntifering, Brittany; Dingreville, Remi; Hattar, Khalid M.; Qu, Jianmin

Transmission electron microscopy (TEM) is a valuable methodology for investigating radiation-induced microstructural changes and elucidating the underlying mechanisms involved in the aging and degradation of nuclear reactor materials. However, the use of electrons for imaging may result in several inadvertent effects that can potentially change the microstructure and mechanisms active in the material being investigated. In this study, in situ TEM characterization is performed on nanocrystalline nickel samples under self-ion irradiation and post irradiation annealing. During annealing, voids are formed around 200 °C only in the area illuminated by the electron beam. Based on diffraction patterns analyses, it is hypothesized that the electron beam enhanced the growth of a NiO layer resulting in a decrease of vacancy mobility during annealing. The electron beam used to investigate self-ion irradiation ultimately significantly affected the type of defects formed and the final defect microstructure.

More Details

LDRD final report : mesoscale modeling of dynamic loading of heterogeneous materials

Robbins, Joshua; Dingreville, Remi; Voth, Thomas E.; Furnish, Michael D.

Material response to dynamic loading is often dominated by microstructure (grain structure, porosity, inclusions, defects). An example critically important to Sandia's mission is dynamic strength of polycrystalline metals where heterogeneities lead to localization of deformation and loss of shear strength. Microstructural effects are of broad importance to the scientific community and several institutions within DoD and DOE; however, current models rely on inaccurate assumptions about mechanisms at the sub-continuum or mesoscale. Consequently, there is a critical need for accurate and robust methods for modeling heterogeneous material response at this lower length scale. This report summarizes work performed as part of an LDRD effort (FY11 to FY13; project number 151364) to meet these needs.

More Details
Results 276–300 of 304
Results 276–300 of 304