Interface Flux Recovery Framework for Constructing Partitioned Heterogeneous Time-Integration Methods
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
We develop and analyze an optimization-based method for the coupling of a static peridynamic (PD) model and a static classical elasticity model. The approach formulates the coupling as a control problem in which the states are the solutions of the PD and classical equations, the objective is to minimize their mismatch on an overlap of the PD and classical domains, and the controls are virtual volume constraints and boundary conditions applied at the local-nonlocal interface. Our numerical tests performed on three-dimensional geometries illustrate the consistency and accuracy of our method, its numerical convergence, and its applicability to realistic engineering geometries. We demonstrate the coupling strategy as a means to reduce computational expense by confining the nonlocal model to a subdomain of interest, and as a means to transmit local (e.g., traction) boundary conditions applied at a surface to a nonlocal model in the bulk of the domain.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Results in Applied Mathematics
We present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal diffusion coupling. Numerical examples illustrate the theoretical properties of the approach.
Abstract not provided.
Results in Applied Mathematics
Component coupling is a crucial part of climate models, such as DOE's E3SM (Caldwell et al., 2019). A common coupling strategy in climate models is for their components to exchange flux data from the previous time-step. This approach effectively performs a single step of an iterative solution method for the monolithic coupled system, which may lead to instabilities and loss of accuracy. In this paper we formulate an Interface-Flux-Recovery (IFR) coupling method which improves upon the conventional coupling techniques in climate models. IFR starts from a monolithic formulation of the coupled discrete problem and then uses a Schur complement to obtain an accurate approximation of the flux across the interface between the model components. This decouples the individual components and allows one to solve them independently by using schemes that are optimized for each component. To demonstrate the feasibility of the method, we apply IFR to a simplified ocean–atmosphere model for heat-exchange coupled through the so-called bulk condition, common in ocean–atmosphere systems. We then solve this model on matching and non-matching grids to estimate numerically the convergence rates of the IFR coupling scheme.
Results in Applied Mathematics
In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.
This report summarizes the work performed under a one-year LDRD project aiming to enable accurate and robust numerical simulation of partial differential equations for meshes that are of poor quality. Traditional finite element methods use the mesh to both discretize the geometric domain and to define the finite element shape functions. The latter creates a dependence between the quality of the mesh and the properties of the finite element basis that may adversely affect the accuracy of the discretized problem. In this project, we propose a new approach for defining finite element shape functions that breaks this dependence and separates mesh quality from the discretization quality. At the core of the approach is a meshless definition of the shape functions, which limits the purpose of the mesh to representing the geometric domain and integrating the basis functions without having any role in their approximation quality. The resulting non-conforming space can be utilized within a standard discontinuous Galerkin framework providing a rigorous foundation for solving partial differential equations on low-quality meshes. We present a collection of numerical experiments demonstrating our approach in a wide range of settings: strongly coercive elliptic problems, linear elasticity in the compressible regime, and the stationary Stokes problem. We demonstrate convergence for all problems and stability for element pairs for problems which usually require inf-sup compatibility for conforming methods, also referring to a minor modification possible through the symmetric interior penalty Galerkin framework for stabilizing element pairs that would otherwise be traditionally unstable. Mesh robustness is particularly critical for elasticity, and we provide an example that our approach provides a greater than 5x improvement in accuracy and allows for taking an 8x larger stable timestep for a highly deformed mesh, compared to the continuous Galerkin finite element method. The report concludes with a brief summary of ongoing projects and collaborations that utilize or extend the products of this work.
Abstract not provided.
Abstract not provided.
Computers and Fluids
Nonlocal models provide accurate representations of physical phenomena ranging from fracture mechanics to complex subsurface flows, settings in which traditional partial differential equation models fail to capture effects caused by long-range forces at the microscale and mesoscale. However, the application of nonlocal models to problems involving interfaces, such as multimaterial simulations and fluid-structure interaction, is hampered by the lack of a physically consistent interface theory which is needed to support numerical developments and, among other features, reduces to classical models in the limit as the extent of nonlocal interactions vanish. In this paper, we use an energy-based approach to develop a formulation of a nonlocal interface problem which provides a physically consistent extension of the classical perfect interface formulation for partial differential equations. Numerical examples in one and two dimensions validate the proposed framework and demonstrate the scope of our theory.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
In this paper, we continue our efforts to exploit optimization and control ideas as a common foundation for the development of property-preserving numerical methods. Here we focus on a class of scalar advection equations whose solutions have fixed mass in a given Eulerian region and constant bounds in any Lagrangian volume. Our approach separates discretization of the equations from the preservation of their solution properties by treating the latter as optimization constraints. This relieves the discretization process from having to comply with additional restrictions and makes stability and accuracy the sole considerations in its design. A property-preserving solution is then sought as a state that minimizes the distance to an optimally accurate but not property-preserving target solution computed by the scheme, subject to constraints enforcing discrete proxies of the desired properties. Furthermore, we consider two such formulations in which the optimization variables are given by the nodal solution values and suitably defined nodal fluxes, respectively. A key result of the paper reveals that a standard Algebraic Flux Correction (AFC) scheme is a modified version of the second formulation obtained by shrinking its feasible set to a hypercube. In conclusion, we present numerical studies illustrating the optimization-based formulations and comparing them with AFC
Journal of Computational Physics
Mimetic methods discretize divergence by restricting the Gauss theorem to mesh cells. Because point clouds lack such geometric entities, construction of a compatible meshfree divergence remains a challenge. In this work, we define an abstract Meshfree Mimetic Divergence (MMD) operator on point clouds by contraction of field and virtual face moments. This MMD satisfies a discrete divergence theorem, provides a discrete local conservation principle, and is first-order accurate. We consider two MMD instantiations. The first one assumes a background mesh and uses generalized moving least squares (GMLS) to obtain the necessary field and face moments. This MMD instance is appropriate for settings where a mesh is available but its quality is insufficient for a robust and accurate mesh-based discretization. The second MMD operator retains the GMLS field moments but defines virtual face moments using computationally efficient weighted graph-Laplacian equations. This MMD instance does not require a background grid and is appropriate for applications where mesh generation creates a computational bottleneck. It allows one to trade an expensive mesh generation problem for a scalable algebraic one, without sacrificing compatibility with the divergence operator. We demonstrate the approach by using the MMD operator to obtain a virtual finite-volume discretization of conservation laws on point clouds. Numerical results in the paper confirm the mimetic properties of the method and show that it behaves similarly to standard finite volume methods.
Nonlocal models provide accurate representations of physical phenomena ranging from fracture mechanics to complex subsurface flows, settings in which traditional partial differential equation models fail to capture effects caused by long-range forces at the microscale and mesoscale. However, the application of nonlocal models to problems involving interfaces, such as multimaterial simulations and fluid-structure interaction, is hampered by the lack of a physically consistent interface theory which is needed to support numerical developments and, among other features, reduces to classical models in the limit as the extent of nonlocal interactions vanish. In this paper, we use an energy-based approach to develop a formulation of a nonlocal interface problem which provides a physically consistent extension of the classical perfect interface formulation for partial differential equations. Numerical examples in one and two dimensions validate the proposed framework and demonstrate the scope of our theory.
Abstract not provided.
Abstract not provided.