This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmospheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one-hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist of wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.
We invert far field infrasound data for the equivalent seismo-acoustic time domain moment tensor to assess the relative importance of two assumed seismoacoustic source mechanisms. The infrasound data were produced by a four of the underground chemical explosions that were conducted during the Source Physics Experiment (SPE). For each SPE event that we invert, we produce three set of atmospheric Green's functions: an average model based on ten years of atmospheric data, as well as two extrema models designed to maximize the variability of atmospheric conditions for the given time-of-day and day-of-year for each SPE event. To parameterize the inversion, we assume that the source of infrasonic energy results from the linear combination of explosion-induced surface spall and linear seismic-to-elastic mode conversion at the Earth's free surface. We find that the inversion yields relatively repeatable results for the estimated spall source whereas the estimated isotropic explosion source is highly variable. This suggests that the majority of the observed acoustic energy is produced by the spall source and/or our modeling of the elastic energy propagation, and data are subsequent conversion to acoustic energy via linear elastic-to-acoustic coupling at the surface, is too simplistic.
The Large-N array of the Source Physics Experiment (SPE) consisted, in part, of 496 vertical component geophones that recorded the seismic wave field produced by the SPE-5 buried chemical explosion. Preliminary observations of the data showed a large degree of azimuthally dependent seismic scattering, particularly for post-P wave arrivals, hindering surface wave analysis. We document and quantify the azimuthal dependence of the wave field scattering in order to guide future coherent wave field processing methods. Specifically, we form three linear arrays, with different nominal source-receiver azimuths, by extracting a subset of the Large-N stations. For each linear array, we evaluate wave field coherence as a function of frequency and inter-station distance. For P waves, we observe that there is a strong azimuthal dependence of wave coherence, with the highest degree of scattering occurring in a northwest/southeast propagation direction. This suggests that there are structural elements beneath the Large-N array that affect the direct source to receiver body wave ray path. We also observe that the scattering of the post-P energy displays a coherence that is dependent on both frequency and azimuthal direction. This energy is preferentially coherent in the southwest-to-northeast propagation direction, consistent with the strike of the steeply dipping fault (Boundary fault) adjacent to the northeast side of the Large-N array, but only at low frequencies (<10 Hz). At higher frequencies, the azimuthally dependent wave coherence diminishes, suggesting that the scattering of high frequency portion of the post-P wave field is independent of the large-scale geologic structure at this site.
This document serves to guide a researcher through the process of predicting atmospheric conditions in a region of interest utilizing the Weather Research and Forecasting (WRF) model. This documentation is specific to WRF and WRF Preprocessing System (WPS) version 3.8.1. WRF is an atmospheric prediction system designed for meteorological research and numerical atmospheric prediction. In WRF, simulations may be generated utilizing real data or idealized atmospheric conditions. Output from WRF serves as input into the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS) which performs staggered-grid finite difference modeling of the acoustic velocity pressure system to produce Green's functions through these atmospheric models.
This document serves to guide a researcher through the process of running the Weather Research and Forecasting (WRF) model and incorporating observations into coarse resolution reanalysis products to model atmospheric conditions at high (50 m) resolution. This documentation is specific to WRF and the WRF Preprocessing System (WPS) version 3.8.1 and the Objective Analysis (OBSGRID) code released on April 8, 2016. Output from WRF serves as an input into the Time-Domain Atmospheric Acoustic Propagation Suite (TDAAPS) which performs staggered-grid finite difference modeling of the acoustic velocity pressure system to produce Green's functions through these atmospheric models.
Full waveform inversion allows the seismologist to utilize an entire waveform and all the information it contains to help image the 3-D structure of the interior of the earth. This report summarizes the basic theory that has been developed in full waveform seismic inversion, primarily related to computation of sensitivity kernels. It then describes the implementation of this theory using Sandia Geophysics Department's Parelasti code, a 3-D full waveform elastic simulation algorithm. Finally, the code is validated using synthetics from simple homogeneous elastic earth models.
Many earth materials and minerals are seismically anisotropic; however, due to the weakness of anisotropy and for simplicity, the earth is often approximated as an isotropic medium. Specific circumstances, such as in shales, tectonic fabrics, or oriented fractures, for example, require the use of anisotropic simulations in order to accurately model the earth. This report details the development of a new massively parallel 3-D full seismic waveform simulation algorithm within the principle coordinate system of an orthorhombic material, which is a specific form of anisotropy common in layered, fractured media. The theory and implementation of Pararhombi is described along with verification of the code against other solutions.
We invert far field infrasound data for the equivalent seismo-acoustic time domain moment tensor to assess the effects of variable atmospheric models as well as to quantify the relative contributions of two presumed source phenomena. The infrasound data was produced by a series of underground chemical explosions that were conducted during the Source Physics Experiment, (SPE) which was originally designed to study explosion-generated seismo-acoustic signal phenomena. The goal of the work presented herein is two-fold: the first goal is to investigate the sensitivity of the estimated time domain moment tensors to variability of the estimated atmospheric model. The second goal is to determine the relative contribution of two possible source mechanisms to the observed infrasonic wave field. Rather than using actual atmospheric observations to estimate the necessary atmospheric Green's functions, we build a series of atmospheric models that rely on publicly available, regional atmospheric observations and the assumption that the acoustic energy results from a linear combination of an underground isotropic explosion and surface spall. The atmospheric observations are summarized and interpolated onto a 3D grid to produce a model of sound speed at the time of the experiment. For each of four SPE acoustic datasets that we invert, we produced a suite of three atmospheric models, based on ten years of regional meteorological observations: an average model, which averages the atmospheric conditions for ten years prior to each SPE event, as well as two extrema models. We find that the inversion yields relatively repeatable results for the estimated spall source. Conversely, the estimated isotropic explosion source is highly variable. This suggests that the majority of the observed acoustic energy is produced by the spall source and/or our modeling of the elastic energy propagation, and it's subsequent conversion to acoustic energy via linear elastic-to-acoustic coupling at the free surface, is too simplistic.
Due to the weight of overburden and tectonic forces, the solid earth is subject to an ambient stress state. This stress state is quasi-static in that it is generally in a state of equilibrium. Typically, seismology assumes this ambient stress field has a negligible effect on wave propagation. However, two basic theories have been put forward to describe the effects of ambient stress on wave propagation. Dahlen and Tromp (2002) expound a theory based on perturbation analysis that largely supports the traditional seismological view that ambient stress is negligible for wave propagation. The second theory, espoused by Korneev and Glubokovskikh (2013) and supported by some experimental work, states that perturbation analysis is inappropriate since the elastic modulus is very sensitive to the ambient stress states. This brief report reformulates the equations given by Korneev and Glubokovskikh (2013) into a more compact form that makes it amenable to statement in terms of a pre-stress form of Hooke's Law. Furthermore, this report demonstrates the symmetries of the pre-stress modulus tensor and discusses the reciprocity relationship implied by the symmetry conditions.
Due to the weight of overburden and tectonic forces, the solid earth is subject to an ambient stress state. This stress state is quasi-static in that it is generally in a state of equilibrium. Typically, seismology assumes this ambient stress field has a negligible effect on wave propagation. However, two basic theories have been put forward to describe the effects of ambient stress on wave propagation. Dahlen and Tromp (2002) expound a theory based on perturbation analysis that largely supports the traditional seismological view that ambient stress is negligible for wave propagation. The second theory, espoused by Korneev and Glubokovskikh (2013) and supported by some experimental work, states that perturbation analysis is inappropriate since the elastic modulus is very sensitive to the ambient stress states. This brief report reformulates the equations given by Korneev and Glubokovskikh (2013) into a more compact form that makes it amenable to statement in terms of a pre-stress form of Hooke's Law. Furthermore, this report demonstrates the symmetries of the pre-stress modulus tensor and discusses the reciprocity relationship implied by the symmetry conditions.
Waves propagating through natural materials such as ocean water encounter spatial variations in material properties that cannot easily be predicted or known in advance. Deterministic wave simulation algorithms must assume that all properties throughout the model space are precisely known. However, a stochastic wave simulation tool can parameterize the material as a stochastic medium with a certain probability distribution and correlation length. This report documents the addition of spatial stochastic variability into Paracousti-UQ, Sandia Geophysics Department's 3-D full waveform acoustic algorithm within stochastic media. The ability of the code to replicate Monte Carlo solutions in 1-D spatially variable media is also evaluated.
Marine hydrokinetic (MHK) devices generate electricity from the motion of tidal and ocean currents, as well as ocean waves, to provide an additional source of renewable energy available to the United States. These devices are a source of anthropogenic noise in the marine ecosystem and must meet regulatory guidelines that mandate a maximum amount of noise that may be generated. In the absence of measured levels from in situ deployments, a model for predicting the propagation of sound from an array of MHK sources in a real environment is essential. A set of coupled, linearized velocity-pressure equations in the time-domain are derived and presented in this paper, which are an alternative solution to the Helmholtz and wave equation methods traditionally employed. Discretizing these equations on a three-dimensional (3D), finite-difference grid ultimately permits a finite number of complex sources and spatially varying sound speeds, bathymetry, and bed composition. The solution to this system of equations has been parallelized in an acoustic-wave propagation package developed at Sandia National Labs, called Paracousti. This work presents the broadband sound pressure levels from a single source in two-dimensional (2D) ideal and Pekeris wave-guides and in a 3D domain with a sloping boundary. The paper concludes with demonstration of Paracousti for an array of MHK sources in a simple wave-guide.
Resolving the time dependent terms in the seismic moment tensor provides important information that can be used to interpret the source process of an explosion, including the separation of isotropic explosion terms from shear forces and potentially isolated force couples. In this report, we detail our method of inverting three component seismic data for the seismic moment tensor. We review possible seismic source models from the simplest isotropic explosion type source to those incorporating the six independent moment tensor terms. The inversion we describe is formulated in the frequency domain, and results in estimates of time dependent moment tensor components. The inversion relies on an accurate estimate of the Green's functions of the Earth. However, given the complexity of the Earth, we explore the effects of inaccuracies in the presumed Earth model used to estimate the Green's functions needed for the inversion. Specifically, we explore the effects of stochastic variations in the Earth models on the inversion results. These tests are synthetic throughout, and show that adding stochastic density/velocity heterogeneity in the presumed Earth model results in reduced amplitude seismic moment tensor estimates, as well as degrading the data misfit. We suggest two mitigation strategies. First, produce a suite of Green's functions using different realizations of the stochastic field within the Earth Model. Secondly, perform the in- version in the power spectral domain, eliminating all phase information. Finally, we analyze actual seismic data collected in winter 2017/2018. The seismic data was collected at in active geothermal well site outside of Winnimucca, NV, and was produced during well stimulation operations. In general, the inversion results were poor, with a high degree of data misfit. We hypothesize that the poor results are a function of a poorly constrained Earth model as well as noisy, high-frequency data being used in the inversion.
This report shows the results of constructing predictive atmospheric models for the Source Physics Experiments 1-6. Historic atmospheric data are combined with topography to construct an atmo- spheric model that corresponds to the predicted (or actual) time of a given SPE event. The models are ultimately used to construct atmospheric Green's functions to be used for subsequent analysis. We present three atmospheric models for each SPE event: an average model based on ten one- hour snap shots of the atmosphere and two extrema models corresponding to the warmest, coolest, windiest, etc. atmospheric snap shots. The atmospheric snap shots consist of wind, temperature, and pressure profiles of the atmosphere for a one-hour time window centered at the time of the predicted SPE event, as well as nine additional snap shots for each of the nine preceding years, centered at the time and day of the SPE event.