Publications

Results 26–50 of 60
Skip to search filters

Regional Test Center Operations Manual

Stein, Joshua S.; Burnham, Laurie B.; Jones, Christian B.

The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlines tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.

More Details

Performance Comparison of Four SolarWorld Module Technologies at the US DOE Regional Test Center in New Mexico: November 2016 - March 2017

Burnham, Laurie B.; Lave, Matthew S.; Stein, Joshua S.

This report provides a preliminary (three month) analysis for the SolarWorld system installed at the New Mexico Regional Test Center (RTC.) The 8.7kW, four-string system consists of four module types): bifacial, mono-crystalline, mono-crystalline glass-glass and polycrystalline. Overall, the SolarWorld system has performed well to date: most strings closely match their specification-sheet module temperature coefficients and Sandia 's f lash tests show that Pmax values are well within expectations. Although the polycrystalline modules underperformed, the results may be a function of light exposure, as well as mismatch within the string, and not a production flaw. The instantaneous bifacial gains for SolarWorld 's Bisun modules were modest but it should be noted that the RTC racking is not optimized for bifacial modules, nor is albedo optimized at the site. Additional analysis, not only of the SolarWorld installation in New Mexico but of the SolarWorld installations at the Vermont and Florida RTCs will be provide much more information regarding the comparative performance of the four module types.

More Details

One Year Performance Results for the Prism Solar Installation at the New Mexico Regional Test Center: Field Data from February 15 2016 - February 14 2017

Stein, Joshua S.; Burnham, Laurie B.; Lave, Matthew S.

A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced one year of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the twelve-month period ranging from 17% to 132%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism Solar. The most dramatic increase in performance was seen among the vertically mounted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules in the same orientation. Because peak energy generation (mid- morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).

More Details

Performance Comparison of Stion CIGS Modules to Baseline Monocrystalline Modules at the New Mexico Florida and Vermont Regional Test Centers: January 2015-December 2016

Lave, Matthew S.; Burnham, Laurie B.; Stein, Joshua S.

This report provides performance data and analysis for two Stion copper indium gallium selenide (CIGS) module types, one framed, the other frameless, and installed at the New Mexico, Florida and Vermont RTCs. Sandia looked at data from both module types and compared the latter with data from an adjacent monocrystalline baseline array at each RTC. The results indicate that the Stion modules are slightly outperforming their rated power, with efficiency values above 100% of rated power, at 25degC cell temperatures. In addition, Sandia sees no significant performance differences between module types, which is expected because the modules differ only in their framing. In contrast to the baseline systems, the Stion strings showed increasing efficiency with increasing irradiance, with the greatest increase between zero and 400 Wm -2 but still noticeable increases at 1000 Wm -2 . Although baseline data availability in Vermont was spotty and therefore comparative trends are difficult to discern, the Stion modules there may offer snow- shedding advantages over monocrystalline-silicon modules but these findings are preliminary.

More Details

Improving Grid Resilience through Informed Decision-making (IGRID)

Burnham, Laurie B.; Stamber, Kevin L.; Jeffers, Robert F.; Adams, Susan S.; Verzi, Stephen J.; Sahakian, Meghan A.; Haass, Michael J.; Cauthen, Katherine R.

The transformation of the distribution grid from a centralized to decentralized architecture, with bi-directional power and data flows, is made possible by a surge in network intelligence and grid automation. While changes are largely beneficial, the interface between grid operator and automated technologies is not well understood, nor are the benefits and risks of automation. Quantifying and understanding the latter is an important facet of grid resilience that needs to be fully investigated. The work described in this document represents the first empirical study aimed at identifying and mitigating the vulnerabilities posed by automation for a grid that for the foreseeable future will remain a human-in-the-loop critical infrastructure. Our scenario-based methodology enabled us to conduct a series of experimental studies to identify causal relationships between grid-operator performance and automated technologies and to collect measurements of human performance as a function of automation. Our findings, though preliminary, suggest there are predictive patterns in the interplay between human operators and automation, patterns that can inform the rollout of distribution automation and the hiring and training of operators, and contribute in multiple and significant ways to the field of grid resilience.

More Details

Performance Results for the Prism Solar Installation at the New Mexico Regional Test Center: Field Data from February 15 - August 15 2016

Lave, Matthew S.; Stein, Joshua S.; Burnham, Laurie B.

A 9.6 kW test array of Prism bifacial modules and reference monofacial modules installed in February 2016 at the New Mexico Regional Test Center has produced six months of performance data. The data reveal that the Prism modules are out-performing the monofacial modules, with bifacial gains in energy over the six-month period ranging from 18% to 136%, depending on the orientation and ground albedo. These measured bifacial gains were found to be in good agreement with modeled bifacial gains using equations previously published by Prism. The most dramatic increase in performance was seen among the vertically tilted, west-facing modules, where the bifacial modules produced more than double the energy of monofacial modules and more energy than monofacial modules at any orientation. Because peak energy generation (mid-morning and mid-afternoon) for these bifacial modules may best match load on the electric grid, the west-facing orientation may be more economically desirable than traditional south-facing module orientations (which peak at solar noon).

More Details

The long-term viability of concentrated photovoltaic systems in the southwestern US

ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE)

Sahm, Aaron; Burnham, Laurie B.; Boehm, Robert; Betemedhin, Adam; Wood, Gary

Total lifetime costs of photovoltaic (PV) systems are important determinants of profitability. But such costs are not always accurately measured and compared against fluctuating electricity costs, which can be an important contributor to longterm profitability. In this paper, we consider the economics of concentrated photovoltaics (CPV), which offer significantly higher efficiency and greater energy production over traditional fixed flat-plate PV installations in high-irradiance regions, but are perceived to be risky investments. Working with two models, one a simple annual model that uses only direct normal solar insolation; the other a more complex hourly model that uses direct normal solar insolation, ambient temperature, and wind speed to predict energy yield, we calculated the energy production and corresponding revenue generation for a 28 kW CPV unit and a comparable single-axis tracker field in Nevada. Our resulting cost matrix shows how much revenue a CPV system can reasonably be expected to generate under different pricing schemes and time periods. While the values vary depending on the assumptions made, the matrix provides an index of profitability, enabling prospective buyers to compare the costs of purchasing, installing and maintaining a system against likely revenue. As a result of our calculations, we anticipate that CPV systems will still be viable in high flux areas because they offer the promise of profitability now and continued or increased profitability as cell costs decrease and/or overall efficiency increases. Nonetheless, other factors, such as long-term reliability and O&M costs, must be addressed if CPV is to compete with other simpler technologies, such as single-axis PV trackers, which have lower upfront costs and are therefore becoming more attractive to potential customers.

More Details

Situation Awareness and Automation in the Electric Grid Control Room

Procedia Manufacturing

Adams, Susan S.; Cole, Kerstan S.; Haass, Michael J.; Warrender, Christina E.; Jeffers, Robert F.; Burnham, Laurie B.; Forsythe, James C.

Electric distribution utilities, the companies that feed electricity to end users, are overseeing a technological transformation of their networks, installing sensors and other automated equipment, that are fundamentally changing the way the grid operates. These grid modernization efforts will allow utilities to incorporate some of the newer technology available to the home user – such as solar panels and electric cars – which will result in a bi-directional flow of energy and information. How will this new flow of information affect control room operations? How will the increased automation associated with smart grid technologies influence control room operators’ decisions? And how will changes in control room operations and operator decision making impact grid resilience? These questions have not been thoroughly studied, despite the enormous changes that are taking place. In this study, which involved collaborating with utility companies in the state of Vermont, the authors proposed to advance the science of control-room decision making by understanding the impact of distribution grid modernization on operator performance. Distribution control room operators were interviewed to understand daily tasks and decisions and to gain an understanding of how these impending changes will impact control room operations. Situation awareness was found to be a major contributor to successful control room operations. However, the impact of growing levels of automation due to smart grid technology on operators’ situation awareness is not well understood. Future work includes performing a naturalistic field study in which operator situation awareness will be measured in real-time during normal operations and correlated with the technological changes that are underway. The results of this future study will inform tools and strategies that will help system operators adapt to a changing grid, respond to critical incidents and maintain critical performance skills.

More Details
Results 26–50 of 60
Results 26–50 of 60