The Role of Water in the Ion Selectivity of Niobate-based Octahedral Molecular Sieves
J. Phys. Chem. C
Abstract not provided.
J. Phys. Chem. C
Abstract not provided.
Proposed for publication in the Materials Research Society Bulletin.
Abstract not provided.
Hydrogen storage is a key enabling technology required for attaining a hydrogen-based economy. Fundamental research can reveal the underlying principles controlling hydrogen uptake and release by storage materials, and also aid in characterizing and designing novel storage materials. New ideas for hydrogen storage materials come from exploiting the properties of hydrophobic hydration, which refers to water s ability to stabilize, by its mode of association, specific structures under specific conditions. Although hydrogen was always considered too small to support the formation of solid clathrate hydrate structures, exciting new experiments show that water traps hydrogen molecules at conditions of low temperatures and moderate pressures. Hydrogen release is accomplished by simple warming. While these experiments lend credibility to the idea that water could form an environmentally attractive alternative storage compound for hydrogen fuel, which would advance our nation s goals of attaining a hydrogen-based economy, much work is yet required to understand and realize the full potential of clathrate hydrates for hydrogen storage. Here we undertake theoretical studies of hydrogen in water to establish a firm foundation for predictive work on clathrate hydrate H{sub 2} storage capabilities. Using molecular simulation and statistical mechanical theories based in part on quantum mechanical descriptions of molecular interactions, we characterize the interactions between hydrogen and liquid water in terms of structural and thermodynamic properties. In the process we validate classical force field models of hydrogen in water and discover new features of hydrophobic hydration that impact problems in both energy technology and biology. Finally, we predict hydrogen occupancy in the small and large cages of hydrogen clathrate hydrates, a property unresolved by previous experimental and theoretical work.
Journal of Chemical Physics
Abstract not provided.
Biophysical Chemistry
We apply ab initio molecular dynamics (AIMD) to study the hydration structures and electronic properties of the formohydroxamate anion in liquid water. We consider the cis- nitrogen-deprotonated, cis- oxygen-deprotonated, and trans- oxygen-deprotonated formohydroxamate tautomers. They form an average of 6.3, 6.9, and 6.0 hydrogen bonds with water molecules, respectively. The predicted pair correlation functions and time dependence of the hydration numbers suggest that water is highly structured around the nominally negatively charged oxime oxygen in O-deprotonated tautomers but significantly less so around the nitrogen atom in the N-deprotonated species. Wannier function analysis suggests that, in the O-deprotonated anions, the negative charge is concentrated on the oxime oxygen, while in the N-deprotonated case, it is partially delocalized between the nitrogen and the adjoining oxime oxygen atom. © 2006 Elsevier B.V. All rights reserved.
In an effort to produce hydrogen without the unwanted greenhouse gas byproducts, high-temperature thermochemical cycles driven by heat from solar energy or next-generation nuclear power plants are being explored. The process being developed is the thermochemical production of Hydrogen. The Sulfur-Iodide (SI) cycle was deemed to be one of the most promising cycles to explore. The first step of the SI cycle involves the decomposition of H{sub 2}SO{sub 4} into O{sub 2}, SO{sub 2}, and H{sub 2}O at temperatures around 850 C. In-situ removal of O{sub 2} from this reaction pushes the equilibrium towards dissociation, thus increasing the overall efficiency of the decomposition reaction. A membrane is required for this oxygen separation step that is capable of withstanding the high temperatures and corrosive conditions inherent in this process. Mixed ionic-electronic perovskites and perovskite-related structures are potential materials for oxygen separation membranes owing to their robustness, ability to form dense ceramics, capacity to stabilize oxygen nonstoichiometry, and mixed ionic/electronic conductivity. Two oxide families with promising results were studied: the double-substituted perovskite A{sub x}Sr{sub 1-x}Co{sub 1-y}B{sub y}O{sub 3-{delta}} (A=La, Y; B=Cr-Ni), in particular the family La{sub x}Sr{sub 1-x}Co{sub 1-y}Mn{sub y}O{sub 3-{delta}} (LSCM), and doped La{sub 2}Ni{sub 1-x}M{sub x}O{sub 4} (M = Cu, Zn). Materials and membranes were synthesized by solid state methods and characterized by X-ray and neutron diffraction, SEM, thermal analyses, calorimetry and conductivity. Furthermore, we were able to leverage our program with a DOE/NE sponsored H{sub 2}SO{sub 4} decomposition reactor study (at Sandia), in which our membranes were tested in the actual H{sub 2}SO{sub 4} decomposition step.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of the American Chemical Society.
Abstract not provided.
Journal of Chemical Physics
The free energy barriers of vapor tube formed in a metastable liquid confined between hydrophobic walls is investigated. Monte Carlo simulations, the transition state theory and constrained umbrella sampling techniques are performed to estimate the free energy barrier for vapor tube formation. Transmission coefficients calculated for the liquid layer show that capillary evaporation are also described from the size of a vapor pocket formed between the walls.
Journal of Chemical Physics
The capillary evaporation (cavitation) of water confined between two hydrophobic surfaces in close proximity is analyzed. The water is replaced by vapor due to the presence of bulk energetics and surface energetics. Monte Carlo simulations are performed to determine the effect of water confinement on the dynamics of surface-induced phase transitions. To relate the simulation rates to the experimental data, the mass-conserving Kawasaki algorithms are also performed.
Physical Review B
Abstract not provided.
Physical Review B
The structural properties, energetics, and dynamics of Ca{sup 2+} and Mn{sup 2+} substituents in KTaO{sub 3} are investigated from first principles. It is found that Ca substitutes for both K and Ta ions. Oxygen vacancies bind to isolated Ca ions residing at Ta-sites, causing off-center Ca displacement and forming large dipoles. There is also evidence that oppositely charged defects may cluster together. The calculations predict that the activation energy for dipole reorientation via oxygen vacancy hopping within the first neighbor shell of Ta-substituting Ca or Mn exceeds 2 eV. On the other hand, Mn{sup 2+} substituting at the K-site displaces off center along the (100) direction, also forming a dipole. This dipole can reorient via Mn hopping motion with an activation energy of {approximately} 0.18 eV, in reasonable agreement with experiments. The authors argue that, in general, metal ion hopping at the A-site, not oxygen vacancy hopping, is responsible for the small activation energies found in experiments.
This report summarizes research on the aging of Class I components in environments representative of nuclear power plants. It discusses Class IE equipment used in nuclear power plants, typical environments encountered by Class IE components, and aging techniques used to qualify this equipment. General discussions of radiation chemistry of polymers and accelerated aging techniques are also included. Based on the inadequacies of present aging techniques for Class IE equipment, a proposal for an experimental program on electrical cables is presented. One of the main purposes of the proposed work is to obtain relevant data in two areas of particular concern--the effect of radiation dose rate on polymer degradation, and the importance of synergism for combined thermal and radiation environments. A new model that allows combined environment accelerated aging to be carried out is introduced, and it is shown how the experimental data to be generated can be used to test this model.