Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. Furthermore, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform optimal projection associated with residual minimization at the time-continuous level, while LSPG techniques do so at the time-discrete level. This work provides a detailed theoretical and computational comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a number of new findings, including conditions under which the LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model by an order of magnitude.
Participating media radiation (PMR) in weapon safety calculations for abnormal thermal environments are too costly to do routinely. This cost may be s ubstantially reduced by applying reduced order modeling (ROM) techniques. The application of ROM to PMR is a new and unique approach for this class of problems. This approach was investigated by the authors and shown to provide significant reductions in the computational expense associated with typical PMR simulations. Once this technology is migrated into production heat transfer analysis codes this capability will enable the routine use of PMR heat transfer in higher - fidelity simulations of weapon resp onse in fire environments.
This report summarizes FY16 progress towards enabling uncertainty quantification for compressible cavity simulations using model order reduction (MOR). The targeted application is the quantification of the captive-carry environment for the design and qualification of nuclear weapons systems. To accurately simulate this scenario, Large Eddy Simulations (LES) require very fine meshes and long run times, which lead to week-long runs even on parallel state-of-the-art super- computers. MOR can reduce substantially the CPU-time requirement for these simulations. We describe two approaches for model order reduction for nonlinear systems, which can yield significant speed-ups when combined with hyper-reduction: the Proper Orthogonal Decomposition (POD)/Galerkin approach and the POD/Least-Squares Petrov Galerkin (LSPG) approach. The implementation of these methods within the in-house compressible flow solver SPARC is discussed. Next, a method for stabilizing and enhancing low-dimensional reduced bases that was developed as a part of this project is detailed. This approach is based on a premise termed "minimal subspace rotation", and has the advantage of yielding ROMs that are more stable and accurate for long-time compressible cavity simulations. Numerical results for some laminar cavity problems aimed at gauging the viability of the proposed model reduction methodologies are presented and discussed.
ASME 2016 Heat Transfer Summer Conference, HT 2016, collocated with the ASME 2016 Fluids Engineering Division Summer Meeting and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels
Radiation heat transfer is an important phenomenon in many physical systems of practical interest. When participating media is important, the radiative transfer equation (RTE) must be solved for the radiative intensity as a function of location, time, direction, and wavelength. In many heat transfer applications, a quasi-steady assumption is valid. The dependence on wavelength is often treated through a weighted sum of gray gases type approach. The discrete ordinates method is the most common method for approximating the angular dependence. In the discrete ordinates method, the intensity is solved exactly for a finite number of discrete directions, and integrals over the angular space are accomplished through a quadrature rule. In this work, a projection-based model reduction approach is applied to the discrete ordinates method. A small number or ordinate directions are used to construct the reduced basis. The reduced model is then queried at the quadrature points for a high order quadrature in order to inexpensively approximate this highly accurate solution. This results in a much more accurate solution than can be achieved by the low-order quadrature alone. One-, two-, and three-dimensional test problems are presented.
This work presents a new Krylov-subspace-recycling method for efficiently solving sequences of linear systems of equations characterized by varying right-hand sides and symmetric-positive-definite matrices. As opposed to typical truncation strategies used in recycling such as deflation, we propose a truncation method inspired by goal-oriented proper orthogonal decomposition (POD) from model reduction. This idea is based on the observation that model reduction aims to compute a low-dimensional subspace that contains an accurate solution; as such, we expect the proposed method to generate a low-dimensional subspace that is well suited for computing solutions that can satisfy inexact tolerances. In particular, we propose specific goal-oriented POD "ingredients" that align the optimality properties of POD with the objective of Krylov-subspace recycling. To compute solutions in the resulting "augmented" POD subspace, we propose a hybrid direct/iterative three-stage method that leverages (1) the optimal ordering of POD basis vectors, and (2) well-conditioned reduced matrices. Numerical experiments performed on solid-mechanics problems highlight the benefits of the proposed method over existing approaches for Krylov-subspace recycling.