Seelinger, L., Reinarz, A., Lykkegaard, M.B., Alghamdi, A.M.A., Aristoff, D., Bangerth, W., Benezech, J., Diez, M., Frey, K., Jakeman, J.D., Jorgensen, J.S., Kim, K., Martinelli, M., Parno, M., Pellegrini, R., Petra, N., Riis, N.A.B., Rosenfeld, K., Serani, A., … Scheichl, R. (2024). Democratizing uncertainty quantification [Presentation]. Journal of Computational Physics. 10.1016/j.jcp.2024.113542
Publications
Search results
Jump to search filtersKadeethum, T., Jha, B., Verzi, S.J., Jakeman, J.D., Yoon, H., & Yoon, H. (2024). Probabilistic Interpretation of Improved Neural Operators for Large-Scale Geological Carbon Storage [Presentation]. 10.2172/2585754
Sun, X., Jakeman, A.J., Croke, B.F.W., Roberts, S.G., Jakeman, J.D., & Jakeman, J.D. (2024). Assessing convergence in global sensitivity analysis: a review of methods for assessing and monitoring convergence. Socio-Environmental Systems Modelling, 6. 10.18174/sesmo.18678
Kadeethum, T., Chang, K.W., Jakeman, J.D., Yoon, H., & Yoon, H. (2024). Enhancing predictive modeling in subsurface physics: an introduction to the progressive improved neural operator (p-INO) framework [Presentation]. 10.2172/2586056
Safta, C., Jakeman, J.D., Brashar, C.L., Boler, M.E., Gorodetsky, A.A., & Gorodetsky, A.A. (2024). Bayesian Framework for Forecasting Dynamical Systems in the Presence of Corrupted Data [Conference Presentation]. 10.2172/2430539
Safta, C., Jakeman, J.D., Brashar, C.L., Boler, M.E., Ortiz, J.B., & Ortiz, J.B. (2024). A Bayesian Framework for UQ in Dynamical Systems in the Presence of Corrupted Measurements [Conference Presentation]. 10.2172/2540428
Geraci, G., Zeng, X., Gorodetsky, A.A., Jakeman, J.D., Eldred, M., Ghanem, R., & Ghanem, R. (2024). Multi-Fidelity Sampling Estimators for Models with Dissimilar Parametrization [Conference Presentation]. 10.2172/2540454
Jakeman, J.D. (2024). PyApprox: a software package for sensitivity Analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling [Conference Presentation]. 10.2172/2540434
Kadeethum, T., Chang, K.W., Jakeman, J.D., Yoon, H., & Yoon, H. (2024). Progressive reduced order modeling: from single-phase flow to coupled multiphysics processes [Conference Proceeding]. 58th US Rock Mechanics / Geomechanics Symposium 2024, ARMA 2024. 10.2172/2586284
Jakeman, J.D. (2023). PyApprox: A software package for sensitivity analysis, Bayesian inference, optimal experimental design, and multi-fidelity uncertainty quantification and surrogate modeling. Environmental Modelling and Software, 170(1). 10.1016/j.envsoft.2023.105825
Zeng, X., Geraci, G., Eldred, M., Jakeman, J.D., Gorodetsky, A.A., Ghanem, R., & Ghanem, R. (2023). Multifidelity uncertainty quantification with models based on dissimilar parameters. Computer Methods in Applied Mechanics and Engineering, 415. 10.1016/j.cma.2023.116205
Wang, Q., Guillaume, J.H.A., Jakeman, J.D., Bennett, F.R., Croke, B.F.W., Fu, B., Yang, T., Jakeman, A.J., & Jakeman, A.J. (2023). A Decision-Relevant Factor-Fixing Framework: Application to Uncertainty Analysis of a High-Dimensional Water Quality Model. Water Resources Research, 59(8). 10.1029/2022wr032194
White, R.D., Jakeman, J.D., van Bloemen Waanders, B., Kouri, D.P., Alexandarian, A., & Alexandarian, A. (2023). A Bayesian approach to designing experiments that account for risk [Conference Presentation]. 10.2172/2430465
Warner, J., Thompson, M., Geraci, G., Bomarito, G., Eldred, M., Jakeman, J.D., Gorodetsky, A.A., & Gorodetsky, A.A. (2023). Automated Model Tuning for Multifidelity Trajectory Simulation Estimators [Conference Presentation]. 10.2172/2430578
Jakeman, J.D., Geraci, G., & Geraci, G. (2023). Multi-fidelity Surrogate Modeling: A tutorial [Conference Presentation]. 10.2172/2430573
Eldred, M., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., & Jakeman, J.D. (2023). Model Ensemble Configuration for Multifidelity UQ [Conference Presentation]. 10.2172/2430564
Jakeman, J.D., Perego, M., Seidl, D.T., Hillebrand, T., Hoffman, M., Price, S., & Price, S. (2023). Ice Sheet Models of Different Fidelity for Uncertainty Quantification [Conference Presentation]. 10.2172/2430524
Safta, C., Jakeman, J.D., Gorodetsky, A.A., & Gorodetsky, A.A. (2023). Expressive Surrogate Models via Functional Tensor Networks [Conference Presentation]. 10.2172/2431004
Safta, C., Jakeman, J.D., Sargsyan, K., Gorodetsky, A.A., & Gorodetsky, A.A. (2023). Modeling spatio-temporal processes in climate models via functional tensor networks [Conference Presentation]. 10.2172/2431857
Morrow, Z.B., van Bloemen Waanders, B., Jakeman, J.D., & Jakeman, J.D. (2023). RaISE: A Framework to Characterize Surrogate Models in Scientific Machine Learning [Conference Presentation]. 10.2172/2431865
White, R.D., Jakeman, J.D., Wildey, T., & Wildey, T. (2023). Using Data-Consistent Inversion to Build Population-Informed Priors for Bayesian Inference [Conference Presentation]. 10.2172/2540422
Jakeman, J.D., White, R.D., van Bloemen Waanders, B., Alexandarian, A., Kouri, D.P., & Kouri, D.P. (2023). Risk-Averse Goal-Oriented Optimal Experimental Design Using Non-linear Models [Conference Presentation]. 10.2172/2431879
Peterson, K.J., Tezaur, I.K., Powell, A.J., Jakeman, J.D., Roesler, E.L., & Roesler, E.L. (2023). Global Sensitivity Analysis Using the Ultra-Low Resolution E3SM to Investigate Parametric Uncertainty in Arctic Climate [Conference Presentation]. 10.2172/2431840
Zeng, X., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., Ghanem, R., & Ghanem, R. (2023). Improving Bayesian Networks Multifidelity Surrogate Construction with Basis Adaptation [Conference Presentation]. https://doi.org/10.2172/2432101
Zeng, X., Geraci, G., Gorodetsky, A.A., Jakeman, J.D., Eldred, M., Ghanem, R., & Ghanem, R. (2023). Improving Bayesian networks multifidelity surrogate construction with basis adaptation [Conference Presentation]. AIAA SciTech Forum and Exposition, 2023. 10.2172/2432258