Publications
Search results
Jump to search filtersMolecular dynamics simulation of diffusion and electrical conductivity in montmorillonite interlayers
Journal of Physical Chemistry. C
In this study, the diffusion of water and ions in the interlayer region of smectite clay minerals represents a direct probe of the type and strength of clay–fluid interactions. Interlayer diffusion also represents an important link between molecular simulation and macroscopic experiments. Here we use molecular dynamics simulation to investigate trends in cation and water diffusion in montmorillonite interlayers, looking specifically at the effects of layer charge, interlayer cation and cation charge (sodium or calcium), water content, and temperature. For Na-montmorillonite, the largest increase in ion and water diffusion coefficients occurs between the one-layer and two-layer hydrates, corresponding to the transition from inner-sphere to outer-sphere surface complexes. Calculated activation energies for ion and water diffusion in Na-montmorillonite are similar to each other and to the water hydrogen bond energy, suggesting the breaking of water–water and water–clay hydrogen bonds as a likely mechanism for interlayer diffusion. A comparison of interlayer diffusion with that of bulk electrolyte solutions reveals a clear trend of decreasing diffusion coefficient with increasing electrolyte concentration, and in most cases the interlayer diffusion results are nearly coincident with the corresponding bulk solutions. Trends in electrical conductivities computed from the ion diffusion coefficients are also compared.
Light Gas Separations with MOFs via
Abstract not provided.
Molecular Geochemistry: Atomistic Simulations of Mineral Interfaces
Abstract not provided.
Light Gas Separations and Storage with MOFs via DFT Modeling Synthesis and Pressurized Induced Structural Changes
Abstract not provided.
Swelling Properties of Montmorillonite and Beidellite Clay Minerals from Molecular Simulation: Comparison of Temperature, Interlayer Cation, and Charge Location Effects
Journal of Physical Chemistry C
The swelling properties of smectite clay minerals are relevant to many engineering applications including environmental remediation, repository design for nuclear waste disposal, borehole stability in drilling operations, and additives for numerous industrial processes and commercial products. We used molecular dynamics and grand canonical Monte Carlo simulations to study the effects of layer charge location, interlayer cation, and temperature on intracrystalline swelling of montmorillonite and beidellite clay minerals. For a beidellite model with layer charge exclusively in the tetrahedral sheet, strong ion-surface interactions shift the onset of the two-layer hydrate to higher water contents. In contrast, for a montmorillonite model with layer charge exclusively in the octahedral sheet, weaker ion-surface interactions result in the formation of fully hydrated ions (two-layer hydrate) at much lower water contents. Clay hydration enthalpies and interlayer atomic density profiles are consistent with the swelling results. Water adsorption isotherms from grand canonical Monte Carlo simulations are used to relate interlayer hydration states to relative humidity, in good agreement with experimental findings.
Novel Metal-Organic Frameworks for Efficient Stationary Sources via Oxyfuel Combustion
Oxy-fuel combustion is a well-known approach to improve the heat transfer associated with stationary energy processes. Its overall penetration into industrial and power markets is constrained by the high cost of existing air separation technologies for generating oxygen. Cryogenic air separation is the most widely used technology for generating oxygen but is complex and expensive. Pressure swing adsorption is a competing technology that uses activated carbon, zeolites and polymer membranes for gas separations. However, it is expensive and limited to moderate purity O2 . MOFs are cutting edge materials for gas separations at ambient pressure and room temperature, potentially revolutionizing the PSA process and providing dramatic process efficiency improvements through oxy-fuel combustion. This LDRD combined (1) MOF synthesis, (2) gas sorption testing, (3) MD simulations and crystallography of gas siting in pores for structure-property relationship, (4) combustion testing and (5) technoeconomic analysis to aid in real-world implementation.
Efficient Light Gas Separations with MOFs via Predictive Modeling and Tuned Synthesis
Abstract not provided.
Detection of Soluble Ligand-Tuned Molecular Tags for Subterranean Fluid Flow Monitoring Using Resonance Raman Spectroscopy
Light Gas Separations with MOFs via
Abstract not provided.
Molecular Simulation of Structure and Diffusion at Smectite-Water Interfaces: Using Expanded Clay Interlayers as Model Nanopores
Journal of Physical Chemistry C
In geologic settings relevant to a number of extraction and potential sequestration processes, nanopores bounded by clay mineral surfaces play a critical role in the transport of aqueous species. Solution structure and dynamics at clay-water interfaces are quite different from their bulk values, and the spatial extent of this disruption remains a topic of current interest. We have used molecular dynamics simulations to investigate the structure and diffusion of aqueous solutions in clay nanopores approximately 6 nm thick, comparing the effect of clay composition with model Na-hectorite and Na-montmorillonite surfaces. In addition to structural properties at the interface, water and ion diffusion coefficients were calculated within each aqueous layer at the interface, as well as in the central bulk-like region of the nanopore. The results show similar solution structure and diffusion properties at each surface, with subtle differences in sodium adsorption complexes and water structure in the first adsorbed layer due to different arrangements of layer hydroxyl groups in the two clay models. Interestingly, the extent of surface disruption on bulk-like solution structure and diffusion extends to only a few water layers. A comparison of sodium ion residence times confirms similar behavior of inner-sphere and outer-sphere surface complexes at each clay surface, but 1% of sodium ions adsorb in ditrigonal cavities on the hectorite surface. The presence of these anhydrous ions is consistent with highly immobile anhydrous ions seen in previous nuclear magnetic resonance spectroscopic measurements of hectorite pastes.
Methylene blue adsorption on the basal surfaces of kaolinite: Structure and thermodynamics from quantum and classical molecular simulation
Clays and Clay Minerals
Organic dyes such as methylene blue (MB) are often used in the characterization of clays and related minerals, but details of the adsorption mechanisms of such dyes are only partially understood from spectroscopic data, which indicate the presence of monomers, dimers, and higher aggregates for varying mineral surfaces. A combination of quantum (density functional theory) and classical molecular simulation methods was used to provide molecular detail of such adsorption processes, specifically the adsorption of MB onto kaolinite basal surfaces. Slab models with vacuum-terminated surfaces were used to obtain detailed structural properties and binding energies at both levels of theory, while classical molecular dynamics simulations of aqueous pores were used to characterize MB adsorption at infinite dilution and at higher concentration in which MB dimers and one-dimensional chains formed. Results for the neutral MB molecules are compared with those for the corresponding cation. Simulations of the aqueous pore indicate preferred adsorption on the hydrophobic siloxane surface, while charge-balancing chloride ions adsorb at the aluminol surface. At infinite dilution and in the gas-phase models, MB adsorbs with its primary molecular plane parallel to the siloxane surface to enhance hydrophobic interactions. Sandwiched dimers and chains are oriented perpendicular to the surface to facilitate the strong hydrophobic intermolecular interactions. Compared with quantum results, the hybrid force field predicts a weaker MB adsorption energy but a stronger dimerization energy. The structure and energetics of adsorbed MB at infinite dilution are consistent with the gas-phase binding results, which indicate that monomer adsorption is driven by strong interfacial forces rather than by the hydration properties of the dye. These results inform spectroscopic studies of MB adsorption on mineral surfaces while also revealing critical areas for development of improved hybrid force fields.
Molecular simulation of structure and diffusion at smectite-water interfaces: Using expanded clay interlayers as model nanopores
Abstract not provided.
Light Gas Separations and Storage with MOFs via Modeling Synthesis and Pressurized Induced Structural Changes
Abstract not provided.
Light Gas Separations and Storage with MOFs via Modeling Synthesis and Pressurized Induced Structural Changes
Abstract not provided.
Molecular Adsorption on (Oxy)hydroxide and Carbon Surfaces Studied by Molecular Simulation and Desorption Experiments
Abstract not provided.
Effect of metal in M3(btc)2 and M2(dobdc) MOFs for O2/N2 separations: A combined density functional theory and experimental study
Journal of Physical Chemistry C
Computational screening of metal-organic framework (MOF) materials for selective oxygen adsorption from air is used to identify new sorbents for oxyfuel combustion process feedstock streams. A comprehensive study on the effect of MOF metal chemistry on gas binding energies in two common but structurally disparate MOFs has been undertaken. Dispersion-corrected density functional theory (DFT) methods were used to calculate the oxygen and nitrogen binding energies with each of 14 metals, respectively, substituted into two MOF series, M2(dobdc) and M3(btc)2. The accuracy of DFT methods was validated by comparing trends in binding energy with experimental gas sorption measurements. A periodic trend in oxygen binding energies was found, with greater oxygen binding energies for early transition-metal-substituted MOFs compared to late transition metal MOFs; this was independent of MOF structural type. The larger binding energies were associated with oxygen binding in a side-on configuration to the metal, with concomitant lengthening of the O-O bond. In contrast, nitrogen binding energies were similar across the transition metal series, regardless of both MOF structural type and metal identity. Taken together, these findings suggest that early transition metal MOFs are best suited to separating oxygen from nitrogen and that the MOF structural type is less important than the metal identity.
Enhanced O2 selectivity versus N2 by partial metal substitution in Cu-BTC
Chemistry of Materials
Here we describe the homogeneous substitution of Mn, Fe and Co at various levels into a prototypical metal-organic framework (MOF), namely Cu-BTC (HKUST-1), and the effect of that substitution on preferential gas sorption. Using a combination of density functional theory (DFT) calculations, postsynthetic metal substitutions, materials characterization, and gas sorption testing, we demonstrate that the identity of the metal ion has a quantifiable effect on their oxygen and nitrogen sorption properties at cryogenic temperatures. An excellent correlation is found between O2/N2 selectivities determined experimentally at 77 K and the difference in O2 and N2 binding energies calculated from DFT modeling data: Mn > Fe > Co > Cu. Room temperature gas sorption studies were also performed and correlated with metal substitution. The Fe-exchanged sample shows a significantly higher nitrogen isosteric heat of adsorption at temperatures close to ambient conditions (273 K - 298 K) as compared to all other metals studied, indicative of favorable interactions between N2 and coordinatively unsaturated Fe metal centers. Furthermore, differences in gas adsorption results at cryogenic and room temperatures are evident; they are explained by comparing experimental results with DFT binding energies (0 K) and room temperature Grand Canonical Monte Carlo simulations.
Light Gas Separations and Storage with MOFs via Modeling Synthesis and Pressurized Induced Structural Changes
Abstract not provided.
Separations with MOFs via Predictive Modeling and Tuned Synthesis
Abstract not provided.
Efficient Light Gas Separations with MOFs via Predictive Modeling and Tuned Synthesis
Abstract not provided.
Molecular dynamics simulations of uranyl adsorption and structure on the basal surface of muscovite
Molecular Simulation
Anthropogenic activities have led to an increased concentration of uranium on the Earth's surface and potentially in the subsurface with the development of nuclear waste repositories. Uranium is soluble in groundwater, and its mobility is strongly affected by the presence of clay minerals in soils and in subsurface sediments. We use molecular dynamics simulations to probe the adsorption of aqueous uranyl () ions onto the basal surface of muscovite, a suitable proxy for typically ultrafine-grained clay phases. Model systems include the competitive adsorption between potassium counterions and aqueous ions (0.1 M and 1.0 M UO2Cl2, 0.1 M NaCl). We find that for systems with the presence of potassium and uranyl ions, potassium ions dominate the adsorption phenomenon. Potassium ions adsorb entirely as inner sphere complexes associated with the ditrigonal cavity of the basal surface. Uranyl ions adsorb in two configurations when it is the only ion species present, and in a single configuration in the presence of potassium. The majority of adsorbed uranyl ions are tilted < 45°relative to the muscovite surface, and are associated with the Si4Al2 rings near the aluminium substitution sites. © 2014 This manuscript has been authored by Sandia Corporation under Contract No. DE-AC04-94AL85000 with the United States Department of Energy. The US Government retains, and the publisher, by accepting this article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for the United States Government purposes.
Molecular Simulation of Noble Gases and Air in Idealized Carbon Nanotubes: Tuning Pore Diameters for Size-selective Adsorption
Manuscript submission to Journal of Physical Chemistry
Abstract not provided.
Comparing MOF Properties Between Simulation and Experiment
Abstract not provided.
Efficient Light Gas Separations with MOFs via Predictive Modeling and Tuned Synthesis
Abstract not provided.