Uncertainty Quantification in the Community Land Model
Abstract not provided.
Abstract not provided.
Proposed for publication in International Journal for Uncertainty Quantification.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Linear Algebra and its Applications
Abstract not provided.
Abstract not provided.
In this report, we proposed, examined and implemented approaches for performing efficient uncertainty quantification (UQ) in climate land models. Specifically, we applied Bayesian compressive sensing framework to a polynomial chaos spectral expansions, enhanced it with an iterative algorithm of basis reduction, and investigated the results on test models as well as on the community land model (CLM). Furthermore, we discussed construction of efficient quadrature rules for forward propagation of uncertainties from high-dimensional, constrained input space to output quantities of interest. The work lays grounds for efficient forward UQ for high-dimensional, strongly non-linear and computationally costly climate models. Moreover, to investigate parameter inference approaches, we have applied two variants of the Markov chain Monte Carlo (MCMC) method to a soil moisture dynamics submodel of the CLM. The evaluation of these algorithms gave us a good foundation for further building out the Bayesian calibration framework towards the goal of robust component-wise calibration.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The TChem toolkit is a software library that enables numerical simulations using complex chemistry and facilitates the analysis of detailed kinetic models. The toolkit provide capabilities for thermodynamic properties based on NASA polynomials and species production/consumption rates. It incorporates methods that can selectively modify reaction parameters for sensitivity analysis. The library contains several functions that provide analytically computed Jacobian matrices necessary for the efficient time advancement and analysis of detailed kinetic models.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.