Thermionic energy conversion in a miniature format shows potential as a viable, high efficiency, micro to macro-scale power source. A microminiature thermionic converter (MTC) with inter-electrode spacings on the order of microns has been prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes that can be integrated into these converters to increase power production at modest temperatures (800 - 1300 K). The electrode materials are not well understood and the electrode thermionic properties are highly sensitive to manufacturing processes. Advanced theoretical, modeling, and fabrication capabilities are required to achieve optimum performance for MTC diodes. This report describes the modeling and fabrication efforts performed to develop micro dispenser cathodes for use in the MTC.
Density functional theory is used to predict workfunctions, {psi}. For relaxed clean W(1 0 0), the local density approximation (LDA) agrees with experiment better than the newer generalized gradient approximation, probably due to the surface electron self-energy. The large Ba metallic radius indicates it covers W(1 0 0) at about 0.5 monolayer (ML). However, Ba{sup 2+}, O{sup 2-}, and metallic W all have similar radii. Thus 1 ML of BaO (one BaO unit for each two W atoms) produces minimum strain, indicating commensurate interfaces. BaO (1 ML) and Ba (1/2 ML) have the same {psi} to within 0.02 V, so at these coverages reduction or oxidation is not important. Due to greater chemical activity of ScO vs. highly ionic BaO, when mixing the latter with this suboxide of scandia, the overlayer always has BaO as the top layer and ScO as the second layer. The BaO/ScO bilayer has a rocksalt structure, suggesting high stability. In the series BaO/ScO/, BaO/YO/, and BaO/LaO/W(1 0 0), the latter has a remarkably low {psi} of 1.3 V (LDA), but 2 ML of rocksalt BaO also has {psi} at 1.3 V. We suggest BaO (1 ML) does not exist and that it is worthwhile to attempt the direct synthesis and study of BaO (2 ML) and BaO/LaO.
Thermionic energy conversion in a microminiature format shows potential as a viable, high efficiency, on-chip power source. Microminiature thermionic converters (MTC) with inter-electrode spacings on the order of microns are currently being prototyped and evaluated at Sandia. The remaining enabling technology is the development of low work function materials and processes than can be integrated into these converters. In this report, the authors demonstrate a method of incorporating thin film emitters into converters using rf sputtering. They find that the resultant films possess a minimum work function of 1.2 eV. Practical energy conversion is hindered by surface work function non-uniformity. They postulate the source of this heterogeneity to be a result of limited bulk and surface transport of barium. Several methods are proposed for maximizing transport, including increased film porosity and the use of metal terminating layers. They demonstrate a novel method for incorporating film porosity based on metal interlayer coalescence.
Research is in progress to develop microminiature thermionic converters (MTCS) with high energy conversion efficiencies and variable operating temperatures using semiconductor integrated circuit (IC) fabrication methods. The use of IC techniques allows the fabrication of MTCS with cathode to anode spacing of several microns or less and with anode and cathode materials that will have work fimctions ranging from 1 eV to 3 eV. The small cathode to anode spacing and variable electrode work functions should allow the conversion of heat energy to relatively large current densities (up to tens of Amps/cmz) at relatively high conversion efficiencies ( 15-25%).