3-D Pore Evolution of Nanoporous Metal Particles for Energy Storage
Nano Letters
Abstract not provided.
Nano Letters
Abstract not provided.
Cell membranes are dynamic substrates that achieve a diverse array of functions through multi-scale reconfigurations. We explore the morphological changes that occur upon protein interaction to model membrane systems that induce deformation of their planar structure to yield nanotube assemblies. In the two examples shown in this report we will describe the use of membrane adhesion and particle trajectory to form lipid nanotubes via mechanical stretching, and protein adsorption onto domains and the induction of membrane curvature through steric pressure. Through this work the relationship between membrane bending rigidity, protein affinity, and line tension of phase separated structures were examined and their relationship in biological membranes explored.
Abstract not provided.
Nanoporous materials have maximum practical surface areas for electrical charge storage; every point in an electrode is within a few atoms of an interface at which charge can be stored. Metal-electrolyte interfaces make best use of surface area in porous materials. However, ion transport through long, narrow pores is slow. We seek to understand and optimize the tradeoff between capacity and transport. Modeling and measurements of nanoporous gold electrodes has allowed us to determine design principles, including the fact that these materials can deplete salt from the electrolyte, increasing resistance. We have developed fabrication techniques to demonstrate architectures inspired by these principles that may overcome identified obstacles. A key concept is that electrodes should be as close together as possible; this is likely to involve an interpenetrating pore structure. However, this may prove extremely challenging to fabricate at the finest scales; a hierarchically porous structure can be a worthy compromise.
Room temperature radiolysis, density functional theory, and various nanoscale characterization methods were used to synthesize and fully describe Ni-based alloy nanoparticles (NPs) that were synthesized at room temperature. These complementary methods provide a strong basis in understanding and describing metastable phase regimes of alloy NPs whose reaction formation is determined by kinetic rather than thermodynamic reaction processes. Four series of NPs, (Ag-Ni, Pd-Ni, Co-Ni, and W-Ni) were analyzed and characterized by a variety of methods, including UV-vis, TEM/HRTEM, HAADF-STEM and EFTEM mapping. In the first focus of research, AgNi and PdNi were studied. Different ratios of Ag{sub x}- Ni{sub 1-x} alloy NPs and Pd{sub 0.5}- Ni{sub 0.5} alloy NP were prepared using a high dose rate from gamma irradiation. Images from high-angle annular dark-field (HAADF) show that the Ag-Ni NPs are not core-shell structure but are homogeneous alloys in composition. Energy filtered transmission electron microscopy (EFTEM) maps show the homogeneity of the metals in each alloy NP. Of particular interest are the normally immiscible Ag-Ni NPs. All evidence confirmed that homogeneous Ag-Ni and Pd-Ni alloy NPs presented here were successfully synthesized by high dose rate radiolytic methodology. A mechanism is provided to explain the homogeneous formation of the alloy NPs. Furthermore, studies of Pd-Ni NPs by in situ TEM (with heated stage) shows the ability to sinter these NPs at temperatures below 800 C. In the second set of work, CoNi and WNi superalloy NPs were attempted at 50/50 concentration ratios using high dose rates from gamma irradiation. Preliminary results on synthesis and characterization have been completed and are presented. As with the earlier alloy NPs, no evidence of core-shell NP formation occurs. Microscopy results seem to indicate alloying occurred with the CoNi alloys. However, there appears to be incomplete reduction of the Na{sub 2}WO{sub 4} to form the W{sup 2+} ion in solution; the predominance of WO{sup +} appears to have resulted in a W-O-Ni complex that has not yet been fully characterized.
Abstract not provided.
Abstract not provided.
Proposed for publication in the International Journal of Hydrogen Energy.
Nanoporous palladium powders are synthesized on milligram to gram scales by chemical reduction of tetrachloro complexes by ascorbate in a concentrated aqueous surfactant at temperatures between -20 and 30 C. Particle diameters are approximately 50 nm, and each particle is perforated by 3 nm pores, as determined by electron tomography. These materials are of potential value for storage of hydrogen isotopes and electrical charge; producing them at large scales in a safe and efficient manner will help realize this. A slightly modified procedure also results in nanoporous platinum.
Nano-structured palladium is examined as a tritium storage material with the potential to release beta-decay-generated helium at the generation rate, thereby mitigating the aging effects produced by enlarging He bubbles. Helium retention in proposed structures is modeled by adapting the Sandia Bubble Evolution model to nano-dimensional material. The model shows that even with ligament dimensions of 6-12 nm, elevated temperatures will be required for low He retention. Two nanomaterial synthesis pathways were explored: de-alloying and surfactant templating. For de-alloying, PdAg alloys with piranha etchants appeared likely to generate the desired morphology with some additional development effort. Nano-structured 50 nm Pd particles with 2-3 nm pores were successfully produced by surfactant templating using PdCl salts and an oligo(ethylene oxide) hexadecyl ether surfactant. Tests were performed on this material to investigate processes for removing residual pore fluids and to examine the thermal stability of pores. A tritium manifold was fabricated to measure the early He release behavior of this and Pd black material and is installed in the Tritium Science Station glove box at LLNL. Pressure-composition isotherms and particle sizes of a commercial Pd black were measured.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely large (on the order of electron volts) and may have important consequences for various SWNT applications. Finally, the adsorption of NMPs onto single-walled carbon nanotubes were studied experimentally. The nanotubes were sonicated in the presence of the nucleotides at various weight fractions and centrifuged before examining the ultraviolet absorbance of the resulting supernatant. A distinct Langmuir adsorption isotherm was obtained for each nucleotide. All of the nucleotides differ in their saturation value as well as their initial slope, which we attribute to differences both in nucleotide structure and in the binding ability of different types or clusters of tubes. Results from this simple system provide insights toward development of dispersion and separation methods for nanotubes: strongly binding nucleotides are likely to help disperse, whereas weaker ones may provide selectivity that may be beneficial to a separation process.
Current state-of-the-art biomimetic methodologies employed worldwide for the realization of self-assembled nanomaterials are adequate for certain unique applications, but a major breakthrough is needed if these nanomaterials are to obtain their true promise and potential. These routes typically utilize a 'top-down' approach in terms of controlling the nucleation, growth, and deposition of structured nanomaterials. Most of these techniques are inherently limited to primarily 2D and simple 3D structures, and are therefore limited in their ultimate functionality and field of use. Zeolites, one of the best-known and understood synthetic silica structures, typically possess highly ordered silica domains over very small length scales. The development of truly organized and hierarchical zeolites over several length scales remains an intense area of research world wide. Zeolites typically require high-temperature and complex synthesis routes that negatively impact certain economic parameters and, therefore, the ultimate utility of these materials. Nonetheless, zeolite usage is in the tons per year worldwide and is quickly becoming ubiquitous in its applications. In addition to these more mature aspects of current practices in materials science, one of the most promising fields of nanotechnology lies in the advent and control of biologically self-assembled materials, especially those involved with silica and other ceramics such as hydroxyapatite. Nature has derived, through billions of years of evolutionary steps, numerous methods by which fault-tolerant and mechanically robust structures can be created with exquisite control and precision at relatively low temperature ranges and pressures. Diatoms are one of the best known examples that exhibit this degree of structure and control known that is involved with the biomineralization of silica. Diatoms are eukaryotic algae that are ubiquitous in marine and freshwater environments. They are a dominant form of phytoplankton critical to global carbon fixation. The silicified cell wall of the diatom is called the frustule, and the intricate silica structure characteristic of a given species is known as the valve. There are two general classes of diatoms, based on their overall morphologies, the pennate and centric. Diatoms achieve their silicified structures in exact fashion through genetically inspired design rules coupled with precisely directed biochemistry occurring at temperatures ranging from a few degrees Celsius (polar species) to temperatures just over room temperature (tropical species). Different species of diatoms produce markedly different structures. To start with, there are two basic types of frustule macromorphologies: pennate diatoms display bilateral symmetry and centric diatoms show radial symmetry. There are thousands of permutations of these two basic forms and the micromorphology of the valve can be quite complex with all types of pore arrangements and morphologies (Figure 1.1). The detailed morphology of the cell wall of a given diatom species is reproduced with exactness, because the process is genetically encoded. Three types of cell wall proteins have been identified in diatoms; the frustulins, pleuralins, and silaffins. Frustulins are cell wall proteins that form an organic coat to protect the silica structures from dissolution into the aqueous environment. Pleuralins are associated with a specific subcomponent of the frustule during cell division, and play a role in hypotheca-epitheca development. Silaffins from Cylindrotheca fusiformis are short chain-length peptides that play a direct role in the silica polymerization process, and possess unique biochemical post-translation functionalization. Larger proteins with silaffin activity have recently been described in Thalassiosira pseudonana. Frustulins and pleuralins play no role in silica polymerization or structure formation in diatoms, whereas the silaffins are one of the primary polymerization determinants. In addition to the silaffins, a class of long-chain polyamines associated with diatom silica has been identified, and shown to also be involved in the silica polymerization process. The silaffins and polyamines are likely to be the two major determinants of silica polymerization in diatoms. Their involvement in the formation of higher order structure is unclear; there have been suggestions that they self-assemble in various combinations to form the final frustule structure but these are highly speculative as there is no substantial data to support this. It is clear from a long history of electron microscopic observations that a major determinant of silica structure in diatoms is generated by growth and molding of the silica deposition vesicle (SDV), the specialized intracellular compartment were the frustule is made. Diatoms are the focus of research activity on several fronts, including the processes by which their distinct silica frustules are formed.
Journal of Materials Chemistry
Abstract not provided.
Bioelectrochemistry
Abstract not provided.
Proposed for publication in the Lab On A Chip.
Abstract not provided.