Publications

Results 51–75 of 176

Search results

Jump to search filters

Search for Infrasound Signals in InSight Data Using Coupled Pressure/Ground Deformation Methods

Bulletin of the Seismological Society of America

Garcia, Raphael F.; Murdoch, Naomi; Lorenz, Ralph; Spiga, Aymeric; Bowman, Daniel; Lognonne, Philippe; Banfield, Don; Banerdt, William B.

The unprecedented quality and sampling rate of seismometer and pressure sensors of the InSight Mars mission allow us to investigate infrasound through its pressure and ground deformation signals. This study focuses on compliance effects induced by acoustic waves propagating almost horizontally close to the surface. The compliance of acoustic waves is first estimated using the compliance estimates from pressure perturbations moving at wind speed. Then, a marker of compliance events is used to detect events of ground deformation induced by pressure variations, in three frequency bands from 0.4 to 3.2 Hz, from InSight sol 180 to 690. Additional selection criteria are imposed on the detected events to focus on acoustic waves and to remove various noise sources (e.g., wind effects or seismometer artifacts). After an automated selection, the visual inspection of the records allows us to validate two infrasound candidates that cannot be related to pressure perturbations moving at wind speed nor to known noise sources. For our highest quality infrasound candidate, the relation between this event and a convective vortex occuring 10 s later is tested. The azimuth of the vortex position at the time of infrasound detection is not consistent with the arrival azimuth of the suspected infrasound inferred from the polarization of seismometer records, thus the link between these two phenomena cannot be demonstrated. Further investigations would require a better understanding of wind-related noise impacting InSight sensors and of the effects of lateral variations of subsurface mechanical properties on the ground deformations induced by atmospheric pressure variations.

More Details

Directional infrasound sensing using acoustic metamaterials

Journal of the Acoustical Society of America

Rouse, Jerry W.; Bowman, Daniel; Walsh, Timothy

Natural and anthropogenic infrasound may travel vast distances, making it an invaluable resource for monitoring phenomena such as nuclear explosions, volcanic eruptions, severe storms, and many others. Typically, these waves are captured using pressure sensors, which cannot encode the direction of arrival—critical information when the source location is not known beforehand. Obtaining this information therefore requires arrays of sensors with apertures ranging from tens of meters to kilometers depending on the wavelengths of interest. This is often impractical in locations that lack the necessary real estate (urban areas, rugged regions, or remote islands); in any case, it requires multiple power, digitizer, and telemetry deployments. Here, the theoretical basis behind a compact infrasound direction of arrival sensor based on the acoustic metamaterials is presented. This sensor occupies a footprint that is orders of magnitude smaller than the span of a typical infrasound array. The diminutive size of the unit greatly expands the locations where it can be deployed. The sensor design is described, its ability to determine the direction of arrival is evaluated, and further avenues of study are suggested.

More Details

Monitoring changes in human activity during the COVID-19 shutdown in Las Vegas using infrasound microbarometers

Journal of the Acoustical Society of America

Bird, Elijah; Bowman, Daniel; Seastrand, Douglas R.; Wright, Melissa A.; Lees, Jonathan M.; Dannemann Dugick, Fransiska K.

While studies of urban acoustics are typically restricted to the audio range, anthropogenic activity also generates infrasound (<20 Hz, roughly at the lower end of the range of human hearing). Shutdowns related to the COVID-19 pandemic unintentionally created ideal conditions for the study of urban infrasound and low frequency audio (20-500 Hz), as closures reduced human-generated ambient noise, while natural signals remained relatively unaffected. An array of infrasound sensors deployed in Las Vegas, NV, provides data for a case study in monitoring human activity during the pandemic through urban acoustics. The array records a sharp decline in acoustic power following the temporary shutdown of businesses deemed nonessential by the state of Nevada. This decline varies spatially across the array, with stations close to McCarran International Airport generally recording the greatest declines in acoustic power. Further, declines in acoustic power fluctuate with the time of day. As only signals associated with anthropogenic activity are expected to decline, this gives a rough indication of periodicities in urban acoustics throughout Las Vegas. The results of this study reflect the city's response to the pandemic and suggest spatiotemporal trends in acoustics outside of shutdowns.

More Details

Flight Test of a Balloon-Borne Aeroseismometer

Bowman, Daniel

The azimuth of an incoming acoustic wave cannot be determined using microbarometers on a free floating balloon. A single observation of infrasound-induced acceleration on a large zero pressure balloon suggested that a motion sensing "aeroseismometer" could fill this gap. Here, a flight test of prototype balloon-borne aeroseismometers is presented. Two balloons, each carrying accelerometers and IMUs, recorded three sets of chemical explosions. The resulting balloon motion time series allows the explosive source to be geolocated. The future of this technology is discussed, along with a planned publication. Finally, recommendations and lessons learned from the campaign are discussed.

More Details

Geophysical and Planetary Acoustics on Balloons

Bowman, Daniel

Natural events and human activity often generate acoustic waves capable of traveling tens to tens of thousands of kilometers across the globe. Ground-based acoustic sensors are limited to dry land and often suffer from wind noise. In contrast, balloon borne acoustic sensors can cross oceans, polar ice caps, and other inhospitable areas, greatly expanding sensor coverage. Since they move with the mean wind speed, their background noise levels are exceptionally low. In the last six years, such sensors have recorded sounds from colliding ocean waves, surface and buried chemical explosions, thunder, wind/mountain interactions, wind turbines, aircraft, and possibly meteors and the aurora. These results have led to new insights on acoustic heating of the upper atmosphere, the detectability of underground explosions, and directional sound fields generated by ocean waves.

More Details

Origin and mitigation of wind noise on balloon-borne infrasound microbarometers

Journal of the Acoustical Society of America

Krishnamoorthy, Siddharth; Bowman, Daniel; Komjathy, Attila; Pauken, Michael T.; Cutts, James A.

High-altitude monitoring of low-frequency acoustic waves (infrasound) on Earth has regained prominence in recent years, primarily driven by improvements in light-weight sensor technology and advances in scientific ballooning techniques. Balloon-borne infrasound monitoring is also being proposed as a remote sensing technique for planetary exploration. Contrary to ground-based infrasound monitoring, the infrasound noise background in the stratosphere as measured by a balloon remains uncharacterized and the efficacy of wind noise mitigation filters has not been investigated. In this study, an analysis of pressure data collected using infrasound microbarometers during the flight of a long-duration zero pressure balloon is presented. A dramatic reduction of background noise in the stratosphere is demonstrated and it is shown that wind noise mitigation filters are not effective at reducing wind noise under these conditions. Results from this study demonstrate stratospheric balloons as a low-noise platform for infrasound monitoring and motivate the development of improved noise mitigation tools.

More Details
Results 51–75 of 176
Results 51–75 of 176