Standard meteorological balloons can deliver small scientific payloads to the stratosphere for a few tens of minutes, but achieving multihour level flight in this region is more difficult. We have developed a solarpowered hot-air balloon named the heliotrope that can maintain a nearly constant altitude in the upper troposphere–lower stratosphere as long as the sun is above the horizon. It can accommodate scientific payloads ranging from hundreds of grams to several kilograms. The balloon can achieve float altitudes exceeding 24 km and fly for days in the Arctic summer, although sunset provides a convenient flight termination mechanism at lower latitudes. Two people can build an envelope in about 3.5 h, and the materials cost about $30. The low cost and simplicity of the heliotrope enables a class of missions that is generally out of reach of institutions lacking specialized balloon expertise. Here, we discuss the design history, construction techniques, trajectory characteristics, and flight prediction of the heliotrope balloon. We conclude with a discussion of the physics of solar hot-air balloon flight.
What it is: A roughly spherical balloon constructed from light duty painter's plastic (0.31 mil high density polyethylene) and darkened with air float charcoal powder. Balloons typically range from 12-40 ft across depending on mission needs. How it works: Sunlight shines on the balloon, heating the air inside. The density difference due to the hot air in the balloon is sufficient to lift it up to 80,000 ft in the air
This document describes how to build a 5-gore, 5.8 m diameter heliotrope solar hot air balloon. This is a fairly straightforward process, but it is painstaking. When making the balloons, make sure not to wear anything that can snag the material (badges, etc). Sharp objects or corners should not be present. When laying out, folding, and cutting gores, it is best to wear socks instead of shoes. Tape should never be pulled off of a balloon. If it accidentally touches the balloon material, it should be left in place or cut free. Also, when adding tape (either intentionally or not), no sticky parts should be left. Sticky parts should either be cut free or taped over. Otherwise, the sticky part will grab the balloon envelope and tear it. You are building a 20 ft sphere out of material thinner than a grocery bag — the best guidance is just to use common sense.
Poler, Guerman; Garcia, Raphael F.; Bowman, Daniel; Martire, Leo
The study of infrasound (acoustic) and gravity waves sources and propagation in the atmosphere of a planet gives us precious insight on atmosphere dynamics, climate, and even internal structure. The implementation of modern pressure sensors with high rate sampling on stratospheric balloons is improving their study. We analyzed the data from the National Aeronautics and Space Administration Ultra Long Duration Balloon mission (16 May to 30 June 2016). Here, we focus on the balloon's transit of the Andes Mountains. We detected gravity waves that are associated to troposphere convective activity and mountain waves. An increase of the horizontal wavelengths from 50 to 70 km with increasing distance to the mountains is favoring the presence of mountain waves. We also report on the detection of infrasounds generated by the mountains in the 0.01–0.1 Hz range with a pressure amplitude increase by a factor 2 relative background signal. Besides, we characterized the decrease of microbaroms power when the balloon was flying away from the ocean coast. These observations suggest, in a way similar to microseisms for seismometers, that microbaroms are the main background noise sources recorded in the stratosphere even far from the ocean sources. Finally, we observed a broadband signal above the Andes, between 0.45 and 2 Hz, probably associated with a thunderstorm. The diversity of geophysical phenomena captured in less than a day of observation stresses the interest of high rate pressure sensors on board long-duration balloon missions.
Krishnamoorthy, Siddharth; Komjathy, Attila; Cutts, James A.; Lognonne, Philippe; Garcia, Raphael F.; Panning, Mark P.; Byrne, Paul K.; Matoza, Robin S.; Jolly, Art D.; Snively, Jonathan B.; Lebonnois, Sebastien; Bowman, Daniel
The study of Venus' evolution is inexorably linked with studying its interior properties, which can be investigated by performing seismic studies on the planet. However, seismology on Venus has long eluded planetary scientists due to technological challenges presented by high surface temperature and pressure, which limit lifetimes of surface-based instrumentation. In this white paper, we present two complementary techniques for performing seismology on Venus by measuring the low-frequency acoustic signature (infrasound) produced by seismic activity through coupling between the solid planet and the atmosphere. These techniques may be implemented with technology available today, without the use of high-temperature electronics.
Krishnamoorthy, Siddharth; Komjathy, Attila; Pauken, Michael T.; Bowman, Daniel; Cutts, James A.; Izraelevitz, Jacob; Jackson, Jennifer M.; Martire, Leo; Garcia, Raphael F.; Mimoun, David