The upcoming re-entry of the OSIRIS-REx Return Capsule: Plans for a coordinated seismo-acoustic observational campaign
Abstract not provided.
Abstract not provided.
Infrasound, with frequencies less than 20 Hz, is generated by both natural and anthropogenic sources. When one of these sources exerts a force on the atmosphere, infrasonic waves are generated. The propagation of these waves largely depends on temperature, wind speed, and wind direction. Previous work has used deep learning to accurately predict atmospheric specifications to altitudes of ~40 km. However, this model breaks down for local distances because it is too low resolution. Here we use a high-resolution meteorological dataset collected in Las Vegas, Nevada, USA to develop a deep learning model that can predict temperature, wind speed, and wind direction. Predictions are compared to ground truth observations to show that the model performs well at predicting temperature and wind direction but struggles with prediction wind speed. Model limitations and improvements are also discussed.
Abstract not provided.
Remote Sensing
In recent years, high-altitude infrasound sensing has become more prolific, demonstrating an enormous value especially when utilized over regions inaccessible to traditional ground-based sensing. Similar to ground-based infrasound detectors, airborne sensors take advantage of the fact that impulsive atmospheric events such as explosions can generate low frequency acoustic waves, also known as infrasound. Due to negligible attenuation, infrasonic waves can travel over long distances, and provide important clues about their source. Here, we report infrasound detections of the Apollo detonation that was carried on 29 October 2020 as part of the Large Surface Explosion Coupling Experiment in Nevada, USA. Infrasound sensors attached to solar hot air balloons floating in the stratosphere detected the signals generated by the explosion at distances 170–210 km. Three distinct arrival phases seen in the signals are indicative of multipathing caused by the small-scale perturbations in the atmosphere. We also found that the local acoustic environment at these altitudes is more complex than previously thought.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Seismological Research Letters
Underground explosions can produce infrasound in the atmosphere, and the wavefield characteristics are often governed by the ground surface motions. Finite-difference methods are popular for infrasound simulation as their generality and robustness allow for complex atmospheric structures and surface topography. A simple point-source approximation is often used because infrasound wavelengths tend to be large relative to the source dimensions. However, this assumption may not be able to capture the complexity of explosion-induced ground motions if the surface area is not compact, and appropriate source models must be incorporated into the finite-difference simulations for accurate infrasound prediction. In this study, we develop a point source representation of the complex ground motions for infrasound sources. Instead of a single point source, we use a series of point sources distributed over the source area. These distributed point sources can be equivalent to air volume changes produced by the ground motions in the atmosphere. We apply the distributed point-source method to a series of buried chemical explosions conducted during the Source Physics Experiment Phase I. Epicentral ground-motion measurements during the experiments provide a way to calculate accurate distributed point sources. We validate and evaluate the accuracy of distributed point source approach for infrasound simulations by direct comparison with acoustic observations in the field experiment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Signals
A smartphone plummeted from a stratospheric height of 36 km, providing a near-real-time record of its rapid descent and ground impact. An app recorded and streamed useful internal multi-sensor data at high sample rates. Signal fusion with external and internal sensor systems permitted a more detailed reconstruction of the Skyfall chronology, including its descent speed, rotation rate, and impact deceleration. Our results reinforce the potential of smartphones as an agile and versatile geophysical data collection system for environmental and disaster monitoring IoT applications. We discuss mobile environmental sensing capabilities and present a flexible data model to record and stream signals of interest. The Skyfall case study can be used as a guide to smartphone signal processing methods that are transportable to other hardware platforms and operating systems.
JASA Express Letters
Free-floating balloons are an emerging platform for infrasound recording, but they cannot host arrays sufficiently wide for multi-sensor acoustic direction finding techniques. Because infrasound waves are longitudinal, the balloon motion in response to acoustic loading can be used to determine the signal azimuth. This technique, called “aeroseismometry,” permits sparse balloon-borne networks to geolocate acoustic sources. This is demonstrated by using an aeroseismometer on a stratospheric balloon to measure the direction of arrival of acoustic waves from successive ground chemical explosions. A geolocation algorithm adapted from hydroacoustics is then used to calculate the location of the explosions.
Abstract not provided.
Aeroseismometery is a novel, cutting edge capability that involves balloon based systems for detecting and geolocating sources of infrasound. The incident infrasound from a range of sources such as volcanos, earthquakes, explosions, supersonic aircraft impinges upon the balloon system causing it to respond dynamically. The dynamic response is post-processed to locate the infrasound source. This report documents the derivation of an analytical model that predicts the balloon dynamics. Governing equations for the system are derived as well as a transfer function relating the infrasound signal to the net force on the balloon components. Experimental measurements of the infrasound signals are convolved with the transfer function and the governing equations numerically time integrated to obtain predictions of the displacement, velocity and acceleration of the balloon system. The predictions are compared to the experimental measurements with good agreement observed. The derivation focuses only on the vertical dynamics of the balloon system. Future work will develop governing equations for the swinging response of the balloon to the incident infrasound.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Earth and Space Science
When an acoustic wave strikes a topographic feature, some of its energy is scattered. Sensors on the ground cannot capture these scattered signals when they propagate at high angles. We report observations of upwardly-scattered acoustic waves prior to refraction back to the ground, intercepting them with a set of balloon-borne infrasound microbarometers in the lower stratosphere over northern Sweden. We show that these scattered waves generate a coda whose presence can be related to topography beneath balloons and low-altitude acoustic ducts. The inclination of the coda signals changes systematically with time, as expected from waves arriving from scatterers successively closer to receivers. The codas are present when a temperature inversion channels infrasound from a set of ground chemical explosions along the ground, but are absent following the inversion's dissipation. Since scattering partitions energy away from the main arrival, these observations imply a mechanism of amplitude loss that had previously been inaccessible to measurement. As such, these data and results allow for a better comprehension of interactions between atmospheric infrasound propagation and the solid earth.
Abstract not provided.
Radio Science
We present an experiment to detect one ton TNT-equivalent chemical explosions using pulsed Doppler radar observations of isodensity layers in the ionospheric E region during two campaigns. The first campaign, conducted on 15 October 2019, produced potential detections of all three shots. The detections closely resemble the temporal and spectral properties predicted using the InfraGA ray tracing and weakly nonlinear waveform propagation model. Here the model predicts that within 6.5–7.25 min of each shot a waveform peaking between 0.9 and 0.4 Hz will impact the ionosphere at 100 km. As the waves pass through this region, they will imprint their signal on an isodensity layer, which is detectable using a Doppler radar operating at the plasma frequency of the isodensity. Within the time windows of each of the three shots in the first campaign, we detect enhanced wave activity peaking near 0.5 Hz. These waves were imprinted on the Doppler signal probing an isodensity layer at 2.785 MHz near 100 km altitude. Despite these detections, the method appears to be unreliable as none of the six shots from the second campaign, conducted on 10 July 2020 were detected. The observations from this campaign were characterized by an increased acoustic noise environment in the microbarom band and persistent scintillation on the radar returns. These effects obscured any detectable signal from these shots and the baseline noise was well above the detection levels of the first campaign.
Abstract not provided.
Abstract not provided.
The TurboWave I and II infrasound campaigns were conducted to examine short term variability in acoustic propagation at local and regional distances. The tests were conducted in nearly co-located regions at the Energetic Materials Research and Testing Center in Socorro, NM between 2019 and 2020 and recorded across a variety of acoustic microbarometer sensors. This report details the waveform data recorded from the experiment and coincides with data archival at the Incorporated Research Institutions for Seismology. The report includes a description of the experiment along with the types of data and instruments. The data release includes raw waveform data as well as metadata information.
Geophysical Research Letters
Natural and anthropogenic events may create low frequency sound waves, or infrasound, that can travel for vast distances in planetary atmospheres. They permit the remote monitoring of geophysical activity over local to global scales. Most studies have utilized ground-based recorders, but it is possible to deploy acoustic sensors to altitudes of over 50 km. Such elevated platforms can capture sounds that their surface analogs cannot access. High altitude balloons and low altitude aerostats are filling this observation gap, but key environments remain out of reach of both of these. Recent work by den Ouden, Smets et al. (2021) addressed this with a new instrumentation platform—a large seabird flying just above the ocean's surface. Their work demonstrates that, infrasound sensing using heavier-than-air platforms in windy environments is possible, which has implications both terrestrially (e.g., extending sensor networks over the oceans) and extraterrestrially (proposed or planned missions to Venus and Titan).