Publications

Results 51–75 of 189

Search results

Jump to search filters

Adverse Event Prediction Using Graph-Augmented Temporal Analysis (Final Report)

Brost, Randolph B.; Carrier, Erin E.; Carroll, Michelle C.; Groth, Katrina M.; Kegelmeyer, William P.; Leung, Vitus J.; Link, Hamilton E.; Patterson, Andrew J.; Phillips, Cynthia A.; Richter, Samuel; Robinson, David G.; Staid, Andrea S.; Woodbridge, Diane M.K.

This report summarizes the work performed under the Sandia LDRD project "Adverse Event Prediction Using Graph-Augmented Temporal Analysis." The goal of the project was to develop a method for analyzing multiple time-series data streams to identify precursors providing advance warning of the potential occurrence of events of interest. The proposed approach combined temporal analysis of each data stream with reasoning about relationships between data streams using a geospatial-temporal semantic graph. This class of problems is relevant to several important topics of national interest. In the course of this work we developed new temporal analysis techniques, including temporal analysis using Markov Chain Monte Carlo techniques, temporal shift algorithms to refine forecasts, and a version of Ripley's K-function extended to support temporal precursor identification. This report summarizes the project's major accomplishments, and gathers the abstracts and references for the publication sub-missions and reports that were prepared as part of this work. We then describe work in progress that is not yet ready for publication.

More Details

Advanced Data Structures for Improved Cyber Resilience and Awareness in Untrusted Environments: LDRD Report

Bender, Michael A.; Berry, Jonathan W.; Farach-Colton, Martin; Jacobs, Justin; Johnson, Rob; Kroeger, Thomas M.; Mayer, Tyler; Mccauley, Samuel; Pandey, Prashant; Phillips, Cynthia A.; Porter, Alexandra; Singh, Shikha; Raizes, Justin; Xu, Helen; Zage, David

This report summarizes the work performed under the project "Advanced Data Structures for Improved Cyber Resilience and Awareness in Untrusted Environments." The goal of the project was to design, analyze, and test new data structures for cybersecurity applications. We had two major thrusts: 1) using new/improved write-optimized data structures and/or algorithms to better man- age and analyze high-speed massive-volume cyberstreams, and 2) adding security features to data structures at minimum cost. Write optimization allows data structures to better use secondary memory to store and search a larger amount of useful information. Secondary memory is large compared to main memory, but data movement to and from secondary memory must be carefully managed to run quickly enough to keep up with fast streams. The first thrust included managing cyberstreams in parallel, both multi-threaded and distributed, and improving the benchmarking infrastructure for testing new streaming data structures. We considered both (near) real-time discovery of particular patterns, and improved logging for improved forensics. We considered two kinds of security-feature problem. The first was high-performance history- independent external-memory data structures. These provide certain protections to data if a disk is stolen. We also prove some trade-offs between speed and security in this setting. The second data-security problem is more secure data look-up in secret-shared data bases. This report summarizes the project's major accomplishments, with the background to under- stand these accomplishments. It gathers the abstracts and references for the six refereed publications that have appeared as part of this work. We summarize several accomplishments that will be submitted for publication. We then archive one piece of partial work that is not likely to be published in the near future: validation of history-independent data structure implementations.

More Details

Geometric Hitting Set for Segments of Few Orientations

Theory of Computing Systems

Fekete, Sandor P.; Huang, Kan; Mitchell, Joseph S.B.; Parekh, Ojas D.; Phillips, Cynthia A.

We study several natural instances of the geometric hitting set problem for input consisting of sets of line segments (and rays, lines) having a small number of distinct slopes. These problems model path monitoring (e.g., on road networks) using the fewest sensors (the “hitting points”). We give approximation algorithms for cases including (i) lines of 3 slopes in the plane, (ii) vertical lines and horizontal segments, (iii) pairs of horizontal/vertical segments. We give hardness and hardness of approximation results for these problems. We prove that the hitting set problem for vertical lines and horizontal rays is polynomially solvable.

More Details

Path Finding for Maximum Value of Information in Multi-Modal Underwater Wireless Sensor Networks

IEEE Transactions on Mobile Computing

Gjanci, Petrika; Petrioli, Chiara; Basagni, Stefano; Phillips, Cynthia A.; Turgut, Damla

We consider underwater multi-modal wireless sensor networks (UWSNs) suitable for applications on submarine surveillance and monitoring, where nodes offload data to a mobile autonomous underwater vehicle (AUV) via optical technology, and coordinate using acoustic communication. Sensed data are associated with a value, decaying in time. In this scenario, we address the problem of finding the path of the AUV so that the Value of Information (VoI) of the data delivered to a sink on the surface is maximized. We define a Greedy and Adaptive AUV Path-finding (GAAP) heuristic that drives the AUV to collect data from nodes depending on the VoI of their data. For benchmarking the performance of AUV path-finding heuristics, we define an integer linear programming (ILP) formulation that accurately models the considered scenario, deriving a path that drives the AUV to collect and deliver data with the maximum VoI. In our experiments GAAP consistently delivers more than 80 percent of the theoretical maximum VoI determined by the ILP model. We also compare the performance of GAAP with that of other strategies for driving the AUV among sensing nodes, namely, random paths, TSP-based paths and a 'lawn mower'-like strategy. Our results show that GAAP always outperforms every other heuristic in terms of delivered VoI, also obtaining higher energy efficiency.

More Details

Write-optimized skip lists

Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems

Bender, Michael A.; Farach-Colton, Martin; Johnson, Rob; Mauras, Simon; Mayer, Tyler; Phillips, Cynthia A.; Xu, Helen

The skip list is an elegant dictionary data structure that is commonly deployed in RAM. A skip list with N elements supports searches, inserts, and deletes in O (log N) operations with high probability (w.h.p.) and range queries returning K elements in O(log N + K) operations w.h.p. A seemingly natural way to generalize the skip list to external memory with block size B is to "promote" with probability 1/B, rather than 1/2. However, there are practical and theoretical obstacles to getting the skip list to retain its efficient performance, space bounds, and high-probability guarantees. We give an external-memory skip list that achieves write-optimized bounds. That is, for 0 < ϵ < 1, range queries take O(logBϵ N + K/B) I/Os w.h.p. and insertions and deletions take O((logBϵ N)/B1-ϵ) amortized I/Os w.h.p. Our write-optimized skip list inherits the virtue of simplicity from RAM skip lists. Moreover, it matches or beats the asymptotic bounds of prior write-optimized data structures such as Bϵ trees or LSM trees. These data structures are deployed in high-performance databases and file systems. The main technical challenge in proving our bounds comes from the fact that there are so few levels in the skip list, an aspect of the data structure that is essential to getting strong external-memory bounds. We use extremal-graph coloring to show that it is possible to decompose paths in the skip list into uncorrelated groups, regardless of the insertion/deletion pattern. Thus, we achieve our bounds by averaging over these uncorrelated paths rather than by averaging over uncorrelated levels, as in the standard skip list.

More Details

Two-level main memory co-design: Multi-threaded algorithmic primitives, analysis, and simulation

Journal of Parallel and Distributed Computing

Berry, Jonathan W.; Bender, Michael A.; Hammond, Simon D.; Hemmert, Karl S.; Mccauley, Samuel; Moore, Branden J.; Moseley, Benjamin; Phillips, Cynthia A.; Resnick, David R.; Rodrigues, Arun

A challenge in computer architecture is that processors often cannot be fed data from DRAM as fast as CPUs can consume it. Therefore, many applications are memory-bandwidth bound. With this motivation and the realization that traditional architectures (with all DRAM reachable only via bus) are insufficient to feed groups of modern processing units, vendors have introduced a variety of non-DDR 3D memory technologies (Hybrid Memory Cube (HMC),Wide I/O 2, High Bandwidth Memory (HBM)). These offer higher bandwidth and lower power by stacking DRAM chips on the processor or nearby on a silicon interposer. We will call these solutions “near-memory,” and if user-addressable, “scratchpad.” High-performance systems on the market now offer two levels of main memory: near-memory on package and traditional DRAM further away. In the near term we expect the latencies near-memory and DRAM to be similar. Thus, it is natural to think of near-memory as another module on the DRAM level of the memory hierarchy. Vendors are expected to offer modes in which the near memory is used as cache, but we believe that this will be inefficient. In this paper, we explore the design space for a user-controlled multi-level main memory. Our work identifies situations in which rewriting application kernels can provide significant performance gains when using near-memory. We present algorithms designed for two-level main memory, using divide-and-conquer to partition computations and streaming to exploit data locality. We consider algorithms for the fundamental application of sorting and for the data analysis kernel k-means. Our algorithms asymptotically reduce memory-block transfers under certain architectural parameter settings. We use and extend Sandia National Laboratories’ SST simulation capability to demonstrate the relationship between increased bandwidth and improved algorithmic performance. Memory access counts from simulations corroborate predicted performance improvements for our sorting algorithm. In contrast, the k-means algorithm is generally CPU bound and does not improve when using near-memory except under extreme conditions. These conditions require large instances that rule out SST simulation, but we demonstrate improvements by running on a customized machine with high and low bandwidth memory. These case studies in co-design serve as positive and cautionary templates, respectively, for the major task of optimizing the computational kernels of many fundamental applications for two-level main memory systems.

More Details
Results 51–75 of 189
Results 51–75 of 189