Measuring Success in Biosafety and Biosecurity
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Sandia National Laboratories' International Biological and Chemical Threat Reduction (SNL/IBCTR) conducted, on behalf of the Federal Select Agent Program (FSAP), a review of risk assessment in modern select agent laboratories. This review and analysis consisted of literature review, interviews of FSAP staff, entities regulated by FSAP, and deliberations of an expert panel. Additionally, SNL/IBCTR reviewed oversight mechanisms used by industries, US agencies, and other countries for high-consequence risks (e.g, nuclear, chemical, or biological materials, aviation, off-shore drilling, etc.) to determine if alternate oversight mechanisms existed that might be applicable to FSAP oversight of biological select agents and toxins. This report contains five findings, based on these reviews and analyses, with recommendations and suggested actions for FSAP to consider.
Abstract not provided.
Abstract not provided.
Rinderpest is a virus that can affect cattle and other even toes ungulates; evidence of outbreaks from over 10,000 years ago highlights the potential impact of this virus. During the 18th century, Rinderpest caused huge losses in cattle throughout Europe. Starting in the mid 1900’s vaccination efforts seemed feasible and work was initiated to vaccinate large populations of cattle. Walter Plowright received numerous awards for updating the Rinderpest vaccine which many believed would be the key to eradication. Vaccination of the disease lead to a massive drop in outbreaks and the last confirmed case of Rinderpest in Asia was in 2000 and in Africa in 2001.1 At this point, Rinderpest has been declared eradicated from nature. However, stocks of the virus are still in many laboratories.2 Rinderpest was investigated as a biological weapon agent during the Second World War. However, following WWII, rinderpest was not considered a high risk as a biological weapon as there was no direct military advantage. Now, with the concern of the use of biological agents as weapons in acts of terrorism, concern regarding rinderpest has resurfaced. Since the eradication of this virus, cattle populations are highly susceptibility to the virus and the economic impacts would be significant. This paper will discuss the specific nature of the terrorism risks associated with rinderpest; and based upon those risks provide recommendations regarding biosecurity management. The biosecurity management measures will be defined in a manner to align with the CWA 15793: the laboratory biorisk management document.
Abstract not provided.
Monitoring infections in vectors such as mosquitoes,sand flies, tsetse flies, and ticks to identify human pathogens may serve as an early warning detection system to direct local government disease preventive measures. One major hurdle in detection is the ability to screen large numbers of vectors for human pathogens without the use of genotype-specific molecular techniques. Next generation sequencing (NGS) provides an unbiased platform capable of identifying known and unknown pathogens circulating within a vector population, but utilizing this technology is time-consuming and costly for vector-borne disease surveillance programs. To address this we developed cost-effective Ilumina® RNA-Seq library preparation methodologiesin conjunction with an automated computational analysis pipeline to characterize the microbial populations circulating in Culex mosquitoes (Culex quinquefasciatus, Culex quinquefasciatus/pipiens complex hybrids, and Culex tarsalis) throughout California. We assembled 20 novel and well-documented arboviruses representing members of Bunyaviridae, Flaviviridae, Ifaviridae, Mesoniviridae, Nidoviridae, Orthomyxoviridae, Parvoviridae, Reoviridae, Rhabdoviridae, Tymoviridae, as well as several unassigned viruses. In addition, we mapped mRNA species to divergent species of trypanosoma and plasmodium eukaryotic parasites and characterized the prokaryotic microbial composition to identify bacterial transcripts derived from wolbachia, clostridium, mycoplasma, fusobacterium and campylobacter bacterial species. We utilized these microbial transcriptomes present in geographically defined Culex populations to define spatial and mosquito species-specific barriers of infection. The virome and microbiome composition identified in each mosquito pool provided sufficient resolution to determine both the mosquito species and the geographic region in California where the mosquito pool originated. This data provides insight into the complexity of microbial species circulating in medically important Culex mosquitoes and their potential impact on the transmission of vector-borne human/veterinary pathogens in California.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
TBD
Abstract not provided.
Abstract not provided.
Abstract not provided.