Publications

Results 1126–1150 of 9,998

Search results

Jump to search filters

Chronicles of astra: Challenges and lessons from the first petascale arm supercomputer

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Laros, James H.; Younge, Andrew J.; Hammond, Simon D.; Laros, James H.; Curry, Matthew J.; Aguilar, Michael J.; Hoekstra, Robert J.; Brightwell, Ronald B.

Arm processors have been explored in HPC for several years, however there has not yet been a demonstration of viability for supporting large-scale production workloads. In this paper, we offer a retrospective on the process of bringing up Astra, the first Petascale supercomputer based on 64-bit Arm processors, and validating its ability to run production HPC applications. Through this process several immature technology gaps were addressed, including software stack enablement, Linux bugs at scale, thermal management issues, power management capabilities, and advanced container support. From this experience, several lessons learned are formulated that contributed to the successful deployment of Astra. These insights can be helpful to accelerate deploying and maturing other first-seen HPC technologies. With Astra now supporting many users running a diverse set of production applications at multi-thousand node scales, we believe this constitutes strong supporting evidence that Arm is a viable technology for even the largest-scale supercomputer deployments.

More Details

Novel Geometric Operations for Linear Programming

Ebeida, Mohamed S.; Abdelkader, Ahmed; Amenta, Nina; Kouri, Drew P.; Parekh, Ojas D.; Phillips, Cynthia A.; Winovich, Nickolas W.

This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.

More Details

Distributed Memory Graph Coloring Algorithms for Multiple GPUs

Proceedings of IA3 2020: 10th Workshop on Irregular Applications: Architectures and Algorithms, Held in conjunction with SC 2020: The International Conference for High Performance Computing, Networking, Storage and Analysis

Bogle, Ian A.; Boman, Erik G.; Devine, Karen D.; Rajamanickam, Sivasankaran R.; Slota, George M.

Graph coloring is often used in parallelizing scientific computations that run in distributed and multi-GPU environments; it identifies sets of independent data that can be updated in parallel. Many algorithms exist for graph coloring on a single GPU or in distributed memory, but hybrid MPI+GPU algorithms have been unexplored until this work, to the best of our knowledge. We present several MPI+GPU coloring approaches that use implementations of the distributed coloring algorithms of Gebremedhin et al. and the shared-memory algorithms of Deveci et al. The on-node parallel coloring uses implementations in KokkosKernels, which provide parallelization for both multicore CPUs and GPUs. We further extend our approaches to solve for distance-2 coloring, giving the first known distributed and multi-GPU algorithm for this problem. In addition, we propose novel methods to reduce communication in distributed graph coloring. Our experiments show that our approaches operate efficiently on inputs too large to fit on a single GPU and scale up to graphs with 76.7 billion edges running on 128 GPUs.

More Details

A performance-portable nonhydrostatic atmospheric dycore for the energy exascale earth system model running at cloud-resolving resolutions

International Conference for High Performance Computing, Networking, Storage and Analysis, SC

Bertagna, Luca B.; Guba, Oksana G.; Taylor, Mark A.; Foucar, James G.; Larkin, Jeff; Bradley, Andrew M.; Rajamanickam, Sivasankaran R.; Salinger, Andrew G.

We present an effort to port the nonhydrostatic atmosphere dynamical core of the Energy Exascale Earth System Model (E3SM) to efficiently run on a variety of architectures, including conventional CPU, many-core CPU, and GPU. We specifically target cloud-resolving resolutions of 3 km and 1 km. To express on-node parallelism we use the C++ library Kokkos, which allows us to achieve a performance portable code in a largely architecture-independent way. Our C++ implementation is at least as fast as the original Fortran implementation on IBM Power9 and Intel Knights Landing processors, proving that the code refactor did not compromise the efficiency on CPU architectures. On the other hand, when using the GPUs, our implementation is able to achieve 0.97 Simulated Years Per Day, running on the full Summit supercomputer. To the best of our knowledge, this is the most achieved to date by any global atmosphere dynamical core running at such resolutions.

More Details

The Impact of Individual Traits on Domain Task Performance: Exploring the Dunning-Kruger Effect

Sanchez, Danielle; Speed, Ann S.

Research shows that individuals often overestimate their knowledge and performance without realizing they have done so, which can lead to faulty technical outcomes. This phenomenon is known as the Dunning-Kruger effect (Kruger & Dunning, 1999). This research sought to determine if some individuals were more prone to overestimating their performance due to underlying personality and cognitive characteristics. To test our hypothesis, we first collected individual difference measures. Next, we asked participants to estimate their performance on three performance tasks to assess the likelihood of overestimation. We found that some individuals may be more prone to overestimating their performance than others, and that faulty problem-solving abilities and low skill may be to blame. Encouraging individuals to think critically through all options and to consult with others before making a high-consequence decision may reduce overestimation.

More Details

CSRI Summer Proceedings 2020

Rushdi, Ahmad R.

The Computer Science Research Institute (CSRI) brings university faculty and students to Sandia for focused collaborative research on Department of Energy (DOE) computer and computational science problems. The institute provides an opportunity for university researchers to learn about problems in computer and computational science at DOE laboratories. Participants conduct leading-edge research, interact with scientists and engineers at the laboratories, and help transfer results of their research to programs at the labs. Some specific CSRI research interest areas are: scalable solvers, optimization, adaptivity and mesh refinement, graph-based, discrete, and combinatorial algorithms, uncertainty estimation, mesh generation, dynamic load-balancing, virus and other malicious-code defense, visualization, scalable cluster computers, data-intensive computing, environments for scalable computing, parallel input/output, advanced architectures, and theoretical computer science. The CSRI Summer Program is organized by CSRI and typically includes the organization of a weekly seminar series and the publication of a summer proceedings. In 2020, the CSRI summer program was executed completely virtually; all student interns worked from home, due to the COVID-19 pandemic.

More Details

Formulation, analysis and computation of an optimization-based local-to-nonlocal coupling method

Results in Applied Mathematics

Bochev, Pavel B.; D'Elia, Marta D.

In this paper, we present an optimization-based coupling method for local and nonlocal continuum models. Our approach couches the coupling of the models into a control problem where the states are the solutions of the nonlocal and local equations, the objective is to minimize their mismatch on the overlap of the local and nonlocal problem domains, and the virtual controls are the nonlocal volume constraint and the local boundary condition. We present the method in the context of Local-to-Nonlocal di usion coupling. Numerical examples illustrate the theoretical properties of the approach.

More Details

Method of information entropy for convergence assessment of molecular dynamics simulations

Journal of Applied Physics

Talaat, Khaled; Cowen, Benjamin J.; Anderoglu, Osman

The lack of a reliable method to evaluate the convergence of molecular dynamics simulations has contributed to discrepancies in different areas of molecular dynamics. In the present work, the method of information entropy is introduced to molecular dynamics for stationarity assessment. The Shannon information entropy formalism is used to monitor the convergence of the atom motion to a steady state in a continuous spatial domain and is also used to assess the stationarity of calculated multidimensional fields such as the temperature field in a discrete spatial domain. It is demonstrated in this work that monitoring the information entropy of the atom position matrix provides a clear indicator of reaching steady state in radiation damage simulations, non-equilibrium molecular dynamics thermal conductivity computations, and simulations of Poiseuille and Couette flow in nanochannels. A main advantage of the present technique is that it is non-local and relies on fundamental quantities available in all molecular dynamics simulations. Unlike monitoring average temperature, the technique is applicable to simulations that conserve total energy such as reverse non-equilibrium molecular dynamics thermal conductivity computations and to simulations where energy dissipates through a boundary as in radiation damage simulations. The method is applied to simulations of iron using the Tersoff/ZBL splined potential, silicon using the Stillinger-Weber potential, and to Lennard-Jones fluid. Its applicability to both solids and fluids shows that the technique has potential for generalization to other areas in molecular dynamics.

More Details
Results 1126–1150 of 9,998
Results 1126–1150 of 9,998