# Publications

## Novel Geometric Operations for Linear Programming

This report summarizes the work performed under the project "Linear Programming in Strongly Polynomial Time." Linear programming (LP) is a classic combinatorial optimization problem heavily used directly and as an enabling subroutine in integer programming (IP). Specifically IP is the same as LP except that some solution variables must take integer values (e.g. to represent yes/no decisions). Together LP and IP have many applications in resource allocation including general logistics, and infrastructure design and vulnerability analysis. The project was motivated by the PI's recent success developing methods to efficiently sample Voronoi vertices (essentially finding nearest neighbors in high-dimensional point sets) in arbitrary dimension. His method seems applicable to exploring the high-dimensional convex feasible space of an LP problem. Although the project did not provably find a strongly-polynomial algorithm, it explored multiple algorithm classes. The new medial simplex algorithms may still lead to solvers with improved provable complexity. We describe medial simplex algorithms and some relevant structural/complexity results. We also designed a novel parallel LP algorithm based on our geometric insights and implemented it in the Spoke-LP code. A major part of the computational step is many independent vector dot products. Our parallel algorithm distributes the problem constraints across processors. Current commercial and high-quality free LP solvers require all problem details to fit onto a single processor or multicore. Our new algorithm might enable the solution of problems too large for any current LP solvers. We describe our new algorithm, give preliminary proof-of-concept experiments, and describe a new generator for arbitrarily large LP instances.