Publications

Results 26–32 of 32

Search results

Jump to search filters

Electromagnetic Extended Finite Elements for High-Fidelity Multimaterial Problems LDRD Final Report

Siefert, Christopher S.; Bochev, Pavel B.; Kramer, Richard M.; Voth, Thomas E.; Cox, James C.

Surface effects are critical to the accurate simulation of electromagnetics (EM) as current tends to concentrate near material surfaces. Sandia EM applications, which include exploding bridge wires for detonator design, electromagnetic launch of flyer plates for material testing and gun design, lightning blast-through for weapon safety, electromagnetic armor, and magnetic flux compression generators, all require accurate resolution of surface effects. These applications operate in a large deformation regime, where body-fitted meshes are impractical and multimaterial elements are the only feasible option. State-of-the-art methods use various mixture models to approximate the multi-physics of these elements. The empirical nature of these models can significantly compromise the accuracy of the simulation in this very important surface region. We propose to substantially improve the predictive capability of electromagnetic simulations by removing the need for empirical mixture models at material surfaces. We do this by developing an eXtended Finite Element Method (XFEM) and an associated Conformal Decomposition Finite Element Method (CDFEM) which satisfy the physically required compatibility conditions at material interfaces. We demonstrate the effectiveness of these methods for diffusion and diffusion-like problems on node, edge and face elements in 2D and 3D. We also present preliminary work on h -hierarchical elements and remap algorithms.

More Details

An extended finite element method with algebraic constraints (XFEM-AC) for problems with weak discontinuities

Computer Methods in Applied Mechanics and Engineering

Kramer, Richard M.; Bochev, Pavel B.; Siefert, Christopher S.; Voth, Thomas E.

We present a new extended finite element method with algebraic constraints (XFEM-AC) for recovering weakly discontinuous solutions across internal element interfaces. If necessary, cut elements are further partitioned by a local secondary cut into body-fitting subelements. Each resulting subelement contributes an enrichment of the parent element. The enriched solutions are then tied using algebraic constraints, which enforce C0 continuity across both cuts. These constraints impose equivalence of the enriched and body-fitted finite element solutions, and are the key differentiating feature of the XFEM-AC. In so doing, a stable mixed formulation is obtained without having to explicitly construct a compatible Lagrange multiplier space and prove a formal inf-sup condition. Likewise, convergence of the XFEM-AC solution follows from its equivalence to the interface-fitted finite element solution. This relationship is further exploited to improve the numerical solution of the resulting XFEM-AC linear system. Examples are shown demonstrating the new approach for both steady-state and transient diffusion problems. © 2013 Elsevier B.V.

More Details
Results 26–32 of 32
Results 26–32 of 32