Optimization-Based Tracer Transport on the Sphere
Abstract not provided.
Abstract not provided.
SIAM Journal on Numerical Analysis
Abstract not provided.
SIAM Journal on Numerical Analysis
We present a new optimization-based method for atomistic-to-continuum (AtC) coupling. The main idea is to cast the latter as a constrained optimization problem with virtual Dirichlet controls on the interfaces between the atomistic and continuum subdomains. The optimization objective is to minimize the error between the atomistic and continuum solutions on the overlap between the two subdomains, while the atomistic and continuum force balance equations provide the constraints. Separation, rather then blending of the atomistic and continuum problems, and their subsequent use as constraints in the optimization problem distinguishes our approach from the existing AtC formulations. We present and analyze the method in the context of a one-dimensional chain of atoms modeled using a linearized two-body potential with next-nearest neighbor interactions.
Abstract not provided.
Computer Methods in Applied Mechanics and Engineering
We present a new extended finite element method with algebraic constraints (XFEM-AC) for recovering weakly discontinuous solutions across internal element interfaces. If necessary, cut elements are further partitioned by a local secondary cut into body-fitting subelements. Each resulting subelement contributes an enrichment of the parent element. The enriched solutions are then tied using algebraic constraints, which enforce C0 continuity across both cuts. These constraints impose equivalence of the enriched and body-fitted finite element solutions, and are the key differentiating feature of the XFEM-AC. In so doing, a stable mixed formulation is obtained without having to explicitly construct a compatible Lagrange multiplier space and prove a formal inf-sup condition. Likewise, convergence of the XFEM-AC solution follows from its equivalence to the interface-fitted finite element solution. This relationship is further exploited to improve the numerical solution of the resulting XFEM-AC linear system. Examples are shown demonstrating the new approach for both steady-state and transient diffusion problems. © 2013 Elsevier B.V.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Arctic sea ice is an important component of the global climate system, reflecting a significant amount of solar radiation, insulating the ocean from the atmosphere and influencing ocean circulation by modifying the salinity of the upper ocean. The thickness and extent of Arctic sea ice have shown a significant decline in recent decades with implications for global climate as well as regional geopolitics. Increasing interest in exploration as well as climate feedback effects make predictive mathematical modeling of sea ice a task of tremendous practical import. Satellite data obtained over the last few decades have provided a wealth of information on sea ice motion and deformation. The data clearly show that ice deformation is focused along narrow linear features and this type of deformation is not well-represented in existing models. To improve sea ice dynamics we have incorporated an anisotropic rheology into the Los Alamos National Laboratory global sea ice model, CICE. Sensitivity analyses were performed using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA) to determine the impact of material parameters on sea ice response functions. Two material strength parameters that exhibited the most significant impact on responses were further analyzed to evaluate their influence on quantitative comparisons between model output and data. The sensitivity analysis along with ten year model runs indicate that while the anisotropic rheology provides some benefit in velocity predictions, additional improvements are required to make this material model a viable alternative for global sea ice simulations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Journal of Computational Physics.
Abstract not provided.
Abstract not provided.