Parallel Volume Rendering in ParaView (VTK BOF)
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proceedings - IEEE Symposium on Volume Visualization and Graphics 2004. VolVis 2004
In this paper, we describe an unstructured mesh volume renderer. Our renderer is interactive and accurately integrates light intensity an order of magnitude faster than previous methods. We employ a projective technique that takes advantage of the expanded programmability of the latest 3D graphics hardware. We also analyze an optical model commonly used for scientific volume rendering and derive a new method to compute it that is very accurate but computationally feasible in real time. We demonstrate a system that can accurately produce a volume rendering of an unstructured mesh with a first-order approximation to any classification method. Furthermore, our system is capable of rendering over 300 thousand tetrahedra per second yet is independent of the classification scheme used. © 2004 IEEE.
Abstract not provided.
Abstract not provided.
Abstract not provided.
IEEE Computer Graphics and Applications
In order to achieve higher rendering performance, the use of parallel sort-last architecture on a PC cluster is presented. The sort-last library (libpglc) can be linked to an existing parallel application to achieve high rendering rates. The efficient use of 64 commodity graphics cards enables to establish pace-setting rendering performance of 300 million triangles per second on extremely large data.