Publications

Results 77826–77850 of 96,771

Search results

Jump to search filters

Overcoming residual stresses and machining distortion in the production of aluminum alloy satellite boxes

Younger, Mandy S.

Distortion frequently occurs during machining of age hardening aluminum alloys due to residual stresses introduced during the quenching step in the heat treatment process. This report quantifies, compares, and discusses the effectiveness of several methods for minimizing residual stresses and machining distortion in aluminum alloys 7075 and 6061.

More Details

Stable local oscillator module

Brocato, Robert W.

This report gives a description of the development of a Stable Local Oscillator (StaLO) multi-chip module (MCM). It is a follow-on report to SAND2006-6414, Stable Local Oscillator Microcircuit. The StaLO accepts a 100MHz input signal and produces output signals at 1.2, 3.3, and 3.6 GHz. The circuit is built as a multi-chip module (MCM), since it makes use of integrated circuit technologies in silicon and lithium niobate as well as discrete passive components. This report describes the development of an MCM-based version of the complete StaLO, fabricated on an alumina thick film hybrid substrate.

More Details

Hollow core and other infrared waveguides for instrumentation in intense radiation environments

Weiss, Jonathan D.

The purpose of this LDRD was to study the effect of steady-state neutron and gamma irradiation on the transmission of waveguides designed to operate well in the near- or mid-IR region of the electromagnetic spectrum. In this context, near-IR refers to the region between 1.3 {mu}m and about 2.4 {mu}m, and mid-IR between 3.0 {mu}m and 4.5 {mu}m. Such radiation environments could exist in nuclear power plants or nuclear weapons. Pulsed and steady-state radiation effects had been extensively studied on silica-based optical fibers because they have been the most readily available, most widely used in communications and sensing, and the least expensive. However, silica-based fibers do not transmit well beyond about 1.8 {mu}m and they are virtually opaque in the mid-IR. The mid-IR, as defined above, and beyond, is where vibrational spectroscopy is carried out. This type of sensing is one important application of infrared optical fibers.

More Details

GEOQUÌMICO : an interactive tool for comparing sorption conceptual models (surface complexation modeling verus K[D])

Cygan, Randall T.

Within reactive geochemical transport, several conceptual models exist for simulating sorption processes in the subsurface. Historically, the K{sub D} approach has been the method of choice due to ease of implementation within a reactive transport model and straightforward comparison with experimental data. However, for modeling complex sorption phenomenon (e.g. sorption of radionuclides onto mineral surfaces), this approach does not systematically account for variations in location, time, or chemical conditions, and more sophisticated methods such as a surface complexation model (SCM) must be utilized. It is critical to determine which conceptual model to use; that is, when the material variation becomes important to regulatory decisions. The geochemical transport tool GEOQUIMICO has been developed to assist in this decision-making process. GEOQUIMICO provides a user-friendly framework for comparing the accuracy and performance of sorption conceptual models. The model currently supports the K{sub D} and SCM conceptual models. The code is written in the object-oriented Java programming language to facilitate model development and improve code portability. The basic theory underlying geochemical transport and the sorption conceptual models noted above is presented in this report. Explanations are provided of how these physicochemical processes are instrumented in GEOQUIMICO and a brief verification study comparing GEOQUIMICO results to data found in the literature is given.

More Details

Final report on LDRD project : coupling strategies for multi-physics applications

Hopkins, Matthew M.; Pawlowski, Roger P.; Moffat, Harry K.; Carnes, Brian C.; Hooper, Russell H.

Many current and future modeling applications at Sandia including ASC milestones will critically depend on the simultaneous solution of vastly different physical phenomena. Issues due to code coupling are often not addressed, understood, or even recognized. The objectives of the LDRD has been both in theory and in code development. We will show that we have provided a fundamental analysis of coupling, i.e., when strong coupling vs. a successive substitution strategy is needed. We have enabled the implementation of tighter coupling strategies through additions to the NOX and Sierra code suites to make coupling strategies available now. We have leveraged existing functionality to do this. Specifically, we have built into NOX the capability to handle fully coupled simulations from multiple codes, and we have also built into NOX the capability to handle Jacobi Free Newton Krylov simulations that link multiple applications. We show how this capability may be accessed from within the Sierra Framework as well as from outside of Sierra. The critical impact from this LDRD is that we have shown how and have delivered strategies for enabling strong Newton-based coupling while respecting the modularity of existing codes. This will facilitate the use of these codes in a coupled manner to solve multi-physic applications.

More Details
Results 77826–77850 of 96,771
Results 77826–77850 of 96,771