The problem with internal communication in dispersed IT support organizations : herding cats
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The purpose of the DOE Metal Hydride Center of Excellence (MHCoE) is to develop hydrogen storage materials with engineering properties that allow the use of these materials in a way that satisfies the DOE/FreedomCAR Program system requirements for automotive hydrogen storage. The Center is a multidisciplinary and collaborative effort with technical interactions divided into two broad areas: (1) mechanisms and modeling (which provide a theoretically driven basis for pursuing new materials) and (2) materials development (in which new materials are synthesized and characterized). Driving all of this work are the hydrogen storage system specifications outlined by the FreedomCAR Program for 2010 and 2015. The organization of the MHCoE during the past year is show in Figure 1. During the past year, the technical work was divided into four project areas. The purpose of the project areas is to organize the MHCoE technical work along appropriate and flexible technical lines. The four areas summarized are: (1) Project A - Destabilized Hydrides, The objective of this project is to controllably modify the thermodynamics of hydrogen sorption reactions in light metal hydrides using hydride destabilization strategies; (2) Project B - Complex Anionic Materials, The objective is to predict and synthesize highly promising new anionic hydride materials; (3) Project C - Amides/Imides Storage Materials, The objective of Project C is to assess the viability of amides and imides (inorganic materials containing NH{sub 2} and NH moieties, respectively) for onboard hydrogen storage; and (4) Project D - Alane, AlH{sub 3}, The objective of Project D is to understand the sorption and regeneration properties of AlH{sub 3} for hydrogen storage.
Abstract not provided.
Decontamination of anthrax spores in critical infrastructure (e.g., subway systems, major airports) and critical assets (e.g., the interior of aircraft) can be challenging because effective decontaminants can damage materials. Current decontamination methods require the use of highly toxic and/or highly corrosive chemical solutions because bacterial spores are very difficult to kill. Bacterial spores such as Bacillus anthracis, the infectious agent of anthrax, are one of the most resistant forms of life and are several orders of magnitude more difficult to kill than their associated vegetative cells. Remediation of facilities and other spaces (e.g., subways, airports, and the interior of aircraft) contaminated with anthrax spores currently requires highly toxic and corrosive chemicals such as chlorine dioxide gas, vapor- phase hydrogen peroxide, or high-strength bleach, typically requiring complex deployment methods. We have developed a non-toxic, non-corrosive decontamination method to kill highly resistant bacterial spores in critical infrastructure and critical assets. A chemical solution that triggers the germination process in bacterial spores and causes those spores to rapidly and completely change to much less-resistant vegetative cells that can be easily killed. Vegetative cells are then exposed to mild chemicals (e.g., low concentrations of hydrogen peroxide, quaternary ammonium compounds, alcohols, aldehydes, etc.) or natural elements (e.g., heat, humidity, ultraviolet light, etc.) for complete and rapid kill. Our process employs a novel germination solution consisting of low-cost, non-toxic and non-corrosive chemicals. We are testing both direct surface application and aerosol delivery of the solutions. A key Homeland Security need is to develop the capability to rapidly recover from an attack utilizing biological warfare agents. This project will provide the capability to rapidly and safely decontaminate critical facilities and assets to return them to normal operations as quickly as possible, sparing significant economic damage by re-opening critical facilities more rapidly and safely. Facilities and assets contaminated with Bacillus anthracis (i.e., anthrax) spores can be decontaminated with mild chemicals as compared to the harsh chemicals currently needed. Both the 'germination' solution and the 'kill' solution are constructed of 'off-the-shelf,' inexpensive chemicals. The method can be utilized by directly spraying the solutions onto exposed surfaces or by application of the solutions as aerosols (i.e., small droplets), which can also reach hidden surfaces.
Photovoltaic (PV) system performance models are relied upon to provide accurate predictions of energy production for proposed and existing PV systems under a wide variety of environmental conditions. Ground based meteorological measurements are only available from a relatively small number of locations. In contrast, satellite-based radiation and weather data (e.g., SUNY database) are becoming increasingly available for most locations in North America, Europe, and Asia on a 10 x 10 km grid or better. This paper presents a study of how PV performance model results are affected when satellite-based weather data is used in place of ground-based measurements.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Probabilistic Engineering Mechanics
Abstract not provided.
Abstract not provided.
Los Alamos and Sandia National Laboratories have formed a new high performance computing center, the Alliance for Computing at the Extreme Scale (ACES). The two labs will jointly architect, develop, procure and operate capability systems for DOE's Advanced Simulation and Computing Program. This presentation will discuss a petascale production capability system, Cielo, that will be deployed in late 2010, and a new partnership with Cray on advanced interconnect technologies.
Abstract not provided.
Abstract not provided.
Improving the thermal performance of a trough plant will lower the LCOE: (1) Improve mirror alignment using the TOPCAT system - Current - increase optical intercept of existing trough solar power plants, Future - allows larger apertures with same receiver size in new trough solar power plants, and Increased concentration ratios/collection efficiencies & economies of scale; and (2) Improve tracking using a closed loop tracking system - Open loop tracking currently used own experience and from industry show need for a improved method. Performance testing of a Trough module and/or receiver on the rotating platform: (1) Installed costs of a trough plant are high. A significant portion of this is the material and assembly cost of the trough module. These costs need to be reduced without sacrificing performance; and (2) New receiver coatings with lower heat loss and higher absorbtivity. TOPCAT system is an optical evaluation tool for parabolic trough solar collectors. Aspects of the TOPCAT system are: (1) Practical, rapid, and cost effective; (2) Inherently aligns mirrors to the receiver of an entire solar collector array (SCA); (3) Can be used for existing installations -no equivalent tool exits; (4) Can be used during production; (5) Currently can be used on LS-2 or LS-3 configurations, but can be easily modified for any configuration; and (6)Generally, one time use.
Abstract not provided.
Abstract not provided.
Abstract not provided.